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1. Introduction and conclusions

The correspondence between large-Nc gauge theory and string theory first advocated by

’t Hooft [1] has taken a novel (and mostly unexpected) form after the Maldacena conjec-

ture, [2]. Although the most precise version of the correspondence was formulated for the

(conformally invariant) maximally supersymmetric Yang Mills theory in four dimensions,

in several other cases, holographic techniques proved useful, and several gravitational duals

describing confining theories in the IR have been proposed. One concrete application of

holographic duality is to establish a novel quantitative understanding of QCD, in particu-

lar of phenomena where strong IR physics is important. These include confinement, chiral

symmetry breaking, as well as quantitative issues about the meson and baryon spectrum

and their interactions.

Critical holographic models obtained as solutions of ten-dimensional string theory [3,

5, 6] have been successful in their qualitative description of confinement and other IR

dynamics, including a semi-quantitative agreement of the glueball spectrum [7] and thermal

properties [3]. At the same time, the theories contain Kaluza-Klein modes, not expected in

QCD, with KK masses of the same order as the dynamical scale of the gauge theory. Above

this scale the theories deviate from QCD. In the solution associated to non-supersymmetric

wrapped D4 branes, [3] the UV completion should be thought of as a 6D theory on M5

branes. In the Chamsedinne-Volkov solution [4], interpreted holographically by Maldacena

and Nunez, [5], the theory becomes the 6d theory obtained by wrapping NS5 branes on

a two-sphere. Finally in the Klebanov-Strassler solution, [6] the theory passes through a

large set of Seiberg dualities to end up with a non-conformal quiver theory in the UV.

An obvious way to avoid the extra KK modes is to consider non-critical string theories.

Indeed, if our general intuition about holography is correct, QCD should be described by a

string theory living in 5 dimensions. However, it is expected from general arguments that

non-critical string duals of large-Nc gauge theories will have background curvatures and

other invariants of the same order as the string scale and an α′ expansion is not expected

to be a priori a reliable approximation. Such an expectation is partly based on the fact

that the part of the potential due to the central charge deficit is of order O(1) in ℓ−2
s units.
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One may also give a more rigorous statement [8] for supersymmetric theories, based on the

conformal anomaly [9].

Despite the hostile environment of non-critical theory, several attempts have been made

to understand holographic physics in this regime, based on two-derivative gravitational

actions, [10, 11, 8, 12]. Moreover, such attempts were seconded by studies of the physics

of probe branes in non-critical backgrounds [13 – 15] and non-critical orientifolds [16] that

provide side information on the holographic approaches. Most of these attempts focused

on 4d CFTs with N = 1 supersymmetry [11, 8] or without it [10, 8, 12]. The rational has

been, that although α′ corrections are generically expected to be substantial, qualitative

information should be (mostly) reliable. Moreover, the high symmetry may guarantee

that some quantities could be reliably computed. Part of this intuition stems from exact

solutions to 2d WZW CFTs where ratios of conformal weights can be calculated classically,

and are exact to all orders in the α′ expansion.

A different and more phenomenological approach was in the meantime developed, and

is now known as AdS/QCD. The original idea was formulated in [17] and it was successfully

applied to the meson sector in [18, 19]. The bulk gravitational background consists of a slice

of AdS5, and a constant dilaton. There is a UV and an IR cutoff. Moreover, the confining

IR physics is imposed by boundary conditions at the IR boundary. This approach seems

very crude and indeed it is, when applied to the pure glue sector. However it has been

partly successful in studying meson physics despite the fact that the dynamics driving

chiral symmetry breaking must be imposed by hand via IR boundary conditions.

In this paper and its companion [20], we will investigate a mostly phenomenologi-

cal approach that runs somewhere in-between non-critical string theory approaches and

AdS/QCD. On the one hand we will investigate and motivate what kind of effective theory

we expect to describe QCD, based on our understanding of string theory. On the other

hand we would like to match this with what we expect from QCD in the UV and the IR.

There is intriguing evidence from studies of QCD, that high-dimension operators, that

should be associated to stringy modes, are not very important for (some of the) physics at

short distances. This is suggested by the success of SVZ sum rules, [21] which tie together

the UV physics with the IR physics in QCD. A counter-argument relies on the fact that as

we understand from critical holography, the large ’t Hooft coupling limit λ≫ 1 is necessary

to suppress higher α′ corrections. Therefore, in QCD, as this coupling is driven to zero in

the UV, such corrections will become dominant. However, as we argue below, progress can

be achieved in this direction despite the difficulties.

Pure 4d YM at large Nc is expected to be dual to a string theory living in 5 dimensions.

The relevant low-lying fields are expected to be dual to the lowest dimension operators,

namely the graviton (dual to Tµν ∼ Tr[F 2
µν − 1

4δµνF
2]), the dilaton φ (dual to Tr[F 2])

and the RR axion a (dual to Tr[F ∧ F ]). Moreover, in the string frame, the theory has a

very simple dilaton potential ∼ δc that reflects the fact that the associated string theory

is non-critical. The theory however must contain a RR four-form whose flux seeds the D3

branes and therefore generates the U(Nc) gauge group. The presence of such a form is

compatible with the spectrum of operators we advocate, as in 5 dimensions a four-form is

non-propagating. By integrating out the four-form we generate new terms in the dilaton
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potential. This is shown in section 2 and appendix B. Therefore, taking into account higher

α′ terms involving the four-form only, generates a non-trivial potential for the dilaton φ.

Hence, the special nature of the four-form implies that its field strength, although it carries

powers of α′, effectively carries no derivatives, and it should therefore be incorporated in

the potential.

There are two properties that this potential satisfies. The first is that it is a nontrivial

function of the ’t Hooft coupling λ ∼ Nce
φ, (λ thus defined, is expected to remain finite in

the large-Nc limit). The second is that (a) it has a regular expansion around λ = 0 (b) it

vanishes as λ
4
3 at λ = 0 (in the Einstein frame). To next to leading order we expect

V (λ) = λ
4
3
(

δc − λ2 + · · ·
)

(1.1)

This potential was established in [8] and is generic in dimensions 5, 4 and 3. The fact that

it vanishes at λ = 0 implies that the asymptotic geometry in the UV does not approach

AdS5, as we might expect. This is analyzed in detail in appendix D. However the potential

above has another intriguing property: it has an AdS minimum at a finite value of the

’t Hooft coupling, and therefore there is a related AdS5 solution with fixed finite ’t Hooft

coupling. The expectation that this AdS5 may be the UV limit of a non-trivial solution with

(logarithmically) running λ seems however to fail as explained in appendix C. Therefore

the only “correct” weak-coupling asymptotics of the dilaton potential must satisfy

lim
λ→0

V (λ) = V0 6= 0 (1.2)

This guarantees the existence of a solution which is asymptotically AdS5 near the UV

boundary, provided the ’t Hooft coupling vanishes there. Moreover, if we wish that in the

same UV region, the ’t Hooft coupling runs logarithmically with energy, then the weak

coupling expansion of the potential must be of the form

V (λ) = V0

(

1 +
∞
∑

n=1

Vn(λa)n

)

(1.3)

with a some positive real number that can be shifted to the wave function renormalization

of the dilaton. As suggested by the perturbative QCD β-function we will select a = 1.

As we show in section 2 and appendix A, this expansion of the potential is equivalent to

the perturbative expansion of the QCD β-function and the coefficients Vn can be directly

related to the perturbative β-function coefficients.

There are two obvious questions that accompany the discussion above:

1. What is the origin of the non-zero constant V0?

2. In the arguments above we have neglected higher α′-corrections involving the curva-

ture and derivatives of the scalars.

As we indicate in appendix B.3, a non-zero constant V0 in the effective dilaton potential

may be generated from the higher-curvature corrections. Although this also implies that

higher α′-corrections cannot be neglected after all, we would like to take the bold step and
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assume that the only quantitatively important part of this class of α′ corrections is just to

generate a non-zero V0 as well as the rest of the terms of the dilaton potential. This step,

has as a consequence that we will eventually deal with a two-derivative effective action but

with a general dilaton potential satisfying (1.3) at weak ’t Hooft coupling. Although this

approach cannot be rigorously defended, our attitude is exploratory. An extra motivation

comes from the success of the SVZ sum rules [21]. Moreover, as we show below, our results

are encouraging.

To summarize the discussion above, our starting point is an action (in the Einstein

frame) of the form

S = M3N2
c

∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]

(1.4)

with the potential V (λ) having around λ = 0 an asymptotic expansion of the form (1.3).

The axion kinetic term in (1.4) deserves some comments. In a way similar with the

potential, we expect a non-trivial function of the dilaton Z(λ) multiplying its kinetic term.1

Moreover, as explained in detail in appendix B.1, the axion kinetic term is of order O(1/N2
c )

compared with the rest of the terms in (1.4). This is due in string theory to the fact that

the axion is a RR field and therefore has a suppressed dilaton dependence.2 The same

argument indicates that terms involving higher powers of (∂a)2 will be further suppressed

at large Nc. Therefore, the α′-expansion of the axion terms is effectively an 1/Nc expansion.

The perturbative asymptotics of Z(λ) therefore should be

Z(λ) = Za + O(λ2) , λ→ 0 (1.5)

String theory gives a λ2 contribution to leading order. However as in the case of the

potential, higher derivative corrections are expected to generate also a constant piece.

This turns out to be in agreement with perturbative QCD.

As shown in section 4 of [20], Z(λ) determines an analogue of a β-function for the

QCD θ-parameter. This interpretation has however caveats that are discussed in the same

section. It is obvious that while searching for the solution of the equations of motion

stemming from the action (1.4), that will describe the QCD vacuum, the axion contribution

can be neglected to leading order in 1/Nc. Once this solution is found, the axion equation

of motion can be solved in order to determine the profile of the QCD θ-parameter and its

associated physics.

Therefore, to leading order in 1/Nc, the vacuum structure of QCD, is captured by

a solution of (1.4) with the appropriate AdS5 asymptotics. All the properties of the 4D

gauge theory depend on a single function of the ’t Hooft coupling, the superpotential W (λ),

1A priori, similar functions might also multiply the Einstein term and the dilaton kinetic term. Such

terms can however be removed by Weyl-rescaling of the metric and redefining λ.
2This is not valid for the RR four-form as its field strength is linear in the number of colors Nc.
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defined as:3

V (λ) = −4

3
λ2

(

dW

dλ

)2

+
64

27
W 2. (1.6)

This dependence can be mapped (up to the overall AdS length ℓ, related to V0 by V0 = 12
ℓ2 )

to the (exact) β-function of QCD, β(λ). In particular, for small λ, all coefficients of the

superpotential can be mapped to the perturbative terms of the β-function. Concretely, the

following relation holds:

β(λ) = −9

4
λ2 d logW (λ)

dλ
(1.7)

Moreover fitting to QCD data we learn that, [20]

ℓ ≃ 6.26 ℓs (1.8)

We expect three integration constants for the equations of motion of the metric and

λ. One of them fixes W (λ) as a solution of eq. (1.6). We show in [20] that this integration

constant is completely fixed by using asymptotic freedom as an input from the gauge theory.

Among the second and third integration constants that arise from the first-order differential

equations for λ and A, only a single combination remains due to the reparametrization

invariance. This remaining integration constant amounts to a definition of ΛQCD. From

eq. (1.7) it is apparent that the exact β-function determines completely the geometry up

to a choice of ΛQCD.

One result, in our two-derivative approach, concerns the investigation of potential

confining backgrounds in the IR. We choose the conformal coordinate system and write

the Einstein metric as

ds2 = e2A(r)(dr2 + ηµνdx
µdxµ) (1.9)

with the AdS5 boundary at r = 0. As we show, eA(r) monotonically decreases from ∞ at

the UV boundary, to 0, or to a finite value, in the IR (see section 3.2). We therefore take

the scale factor in the Einstein frame as our definition for the energy of the gauge theory.

E = eA(r) (1.10)

In the case when the Einstein frame scale factor remains finite at the IR singularity, this

indicates that the dual theory is defined only above a certain energy. Such models however

fail to satisfy some of the properties that are believed to hold in confining theories, namely

the screening of the magnetic color charges.

In our analysis of the non-perturbative regime, we give a general classification of pos-

sible IR geometries according to their confining properties. We use, as a characterization

of confinement, the Wilson loop area law: by “confining,” we label those backgrounds for

which the QCD string (identified with the fundamental string) has a finite tension. We then

analyze various properties of confining backgrounds. Here is a summary of our findings:

3Generically, passing from the potential to the superpotential and the associated first order equations

involves an arbitrary constant that can be thought of as the single constant of integration of (1.6). However

in our case it turns out that the relevant solution is special, and does not have this extra dependence on an

arbitrary constant. This is explained in appendix E of [20].
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• We provide a relation between the β-function of the gauge theory defined by an

infinite series expansion in the ’t Hooft coupling, and the scalar potential (or rather

the superpotential) of the gravitation theory defined by a similar expansion in the

dilaton.

• We study certain α′ corrections to the scalar potential. In particular, we find that

in the identification of the β-function and scalar potential coefficients, the first two

scheme-independent coefficients of the β-function receive no α′ corrections. Moreover

we find that the α′ corrections to the identification of the energy scale with the scale

factor of the metric can be set to zero in a particular scheme for computing the higher

order β-function coefficients, b2, b3, . . . .

• We show that all confining backgrounds have a singularity in the Einstein metric

at some value r0 of the r coordinate. There are two distinct cases for the position

r0 of the IR singularity. One possibility is finite r0. The other is r0 = ∞. The IR

singularity is always of the “good kind” [22]: fluctuation spectra of various fields are

well defined and are not affected directly by the presence of the singularity.

• For regular dilaton potentials,4 the ’t Hooft coupling λ always becomes infinite at

the IR singularity.

• In the case r0 = ∞, the string frame metric is not only regular at the IR singularity

but its curvature also vanishes. Put otherwise, in the string frame, the IR singularity

is only due to the diverging ’t Hooft coupling constant. This suggests that the

supergravity approximation may be a good approximation in the IR region.

• We classify all superpotentials W (λ) that give rise to confining backgrounds: We

parametrize their asymptotics for λ→ ∞ as:5

W (λ) ∼ (log λ)
P
2 λQ , P,Q ∈ R. (1.11)

The ’t Hooft couplings diverges in the IR as

λ ∼ E− 9
4
Q

(

log
1

E

)
P
2Q

, E → 0. (1.12)

1. Q > 2/3 or Q = 2/3 and P > 1 leads to confinement and a singularity at finite

r = r0. The scale factor eA vanishes there as

eA(r) ∼







(r0 − r)
4

9Q2−4 Q > 2
3

exp
[

− C
(r0−r)1/(P−1)

]

Q = 2
3

, (1.13)

where C is a positive constant related to the integration constants.

4We assume that the potential, hence the β-function, do not have singularities at finite λ.
5Since our results are continuous in the parameters P and Q, our classification also extends to any

functions W (λ) that has a well-defined limit for λ → ∞.
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2. Q = 2/3, and 0 ≤ P < 1 leads to confinement and a singularity at r = ∞ The

scale factor eA vanishes there as

eA(r) ∼ exp[−Cr1/(1−P )]. (1.14)

3. Q = 2/3, P = 1 leads to confinement but the singularity may be at a finite or

infinite value of r depending on subleading asymptotics of the superpotential.

The above exhaust all cases that confine. All other cases (Q < 2/3, or Q = 2/3 and

P < 0) fail the Wilson loop test. By eq. (1.7), this classification directly relates the

confining property to the IR behavior of the QCD β-function.

• If Q < 2
√

2/3, no ad hoc boundary conditions are needed but UV and IR nor-

malizability completely determines the glueball spectrum. This is unlike standard

AdS/QCD and other approaches. Since the spectrum is completely determined from

the geometry, and, as discussed above, the latter is in one-to-one correspondence

with the β-function, our construction provides a direct link between the β-function

and the spectrum. On the other hand, when Q > 2
√

2/3, the spectrum is not well

defined without extra boundary conditions in the IR because both solutions to the

mass eigenvalue equation are IR normalizable.6

• For all potentials that confine, the spectrum of 0++ and 2++ glueballs has a mass

gap. Moreover, except for the borderline case Q = 2/3, P = 0,7 the spectrum is

also purely discrete. For the 0+− glueballs an extra assumption is needed about the

strong-coupling asymptotics of the function Z(λ) in (1.4):

Z(λ) ∼ λd , d > 2 as λ→ ∞. (1.15)

If this is satisfied, the 0−+ spectrum is also gapped and discrete. We find that in

QCD d = 4.

• In all the physically interesting confining backgrounds (i.e. those that do not require

extra boundary conditions in the IR), the magnetic color charges are screened. This

is shown by studying the D1 branes embedded in the geometry, see [20]. This is

an improvement with respect to AdS/QCD models, where magnetic quarks are also

confined instead of being screened.

• Of all the possible confining asymptotics, there is a unique one that guarantees “linear

confinement” for all glueballs. It corresponds to the case Q = 2/3, P = 1/2, i.e.

strong-coupling superpotential and β-function asymptotics:

W (λ) ∼ (log λ)
1
4 λ

2
3 , β(λ) = −3

2
λ

[

1 +
3

8 log λ
+ · · ·

]

(1.16)

6In [12] an exact solution was studied based on the potential W (λ) = W0 +W1λ
4

3 in our normalizations.

This generates logarithmic running in the UV and corresponds to a confining background in the IR. However,

as it corresponds to Q = 4/3, extra boundary conditions are needed at the IR singularity. The spectrum

heavily depends on the choice of these boundary conditions.
7This is also exactly the linear dilaton background in the IR. The spectrum of glueballs is however

continuous in this case. Because of this, this case is considered no further.
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In this case the ’t Hooft coupling diverges with energy as

λ ∼ E− 3
2

(

log
1

E

)
3
8

(1.17)

in the IR. This choice also seems to be preferred from considerations of the meson

sector as discussed below.

• The meson sector, assuming Nf ≪ Nc, is implemented by using Nf pairs of D4 − D̄4

branes embedded in the 5-dimensional background along the lines first pointed-out

in ten dimensions in [23]. Moreover, the open string tachyon field is included and it

is dual to the scalar and pseudoscalar quark bilinears as first advocated in [24]. In

section 5 of [20] we have studied the non-linear equation that determines the tachyon

profile (vev). It was shown in [24] that consistency with the anomaly structure implies

that the tachyon field must diverge before or at the IR end of space. What we find

here is that for the confining background the tachyon necessarily diverges at the IR

singularity, signaling chiral symmetry breaking and the IR recombination of the flavor

branes. Moreover, it is found that although the tachyon cannot diverge before the

IR singularity, its derivatives do generically diverge. Such a divergence is physically

unacceptable. Imposing its absence, determines the quark vacuum condensate in

terms of the UV quark masses that act as sources for the tachyon field.

• As in [24], the spectrum of mesons exhibits (almost) linear confinement due to the

tachyon potential rather that the graviton-dilaton background. We have also studied

the masses of the simplest mesons, the vectorial ones which are independent of the

details of chiral symmetry breaking. They depend in general on a combination of the

confining QCD scale (appearing in the graviton-dilaton data) and the AdS length ℓ.

We find that the special background advocated above, corresponding to P = 1/2,

which provides linear confinement in the glueball sector is also the one in which meson

masses do not depend on the AdS5 scale, as expected on general grounds. Therefore

we obtain a simple linear relation between the mass scales of glueballs and generic

mesons (this does not include the pseudo-Goldstone bosons).

• We calculate numerically the 0++, 0−+ and 2++ glueball spectra for β-functions that

interpolate between the standard perturbative QCD regime and the confining regime,

both for the r0 finite and infinite cases. We compare the glueball spectra with lattice

results. Although there is no universal consensus on the reliability of various lattice

results and their relationship to the large-Nc limit, we attempt a comparison with

various confining IR asymptotics. We find that the cases of r0 = ∞ are preferred by

the data.

• We analyze the axion sector of the theory in section 4 of [20]. We solve the equation

for the axion to find

a(r) = (θUV + 2πk)

∫ r0

r
dr

e3AZ(λ)
∫ r0

0
dr

e3AZ(λ)

(1.18)
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where θUV is the UV value for the QCD θ-angle and the integer k labels different large-

Nc vacua. In particular we reproduce the well known result that the θ-dependent

vacuum energy is to leading order in 1/Nc proportional to Mink(θUV + 2πk)2 and

relate the coefficient (topological susceptibility) to the standard QCD β-function as

well as the axion β-function Z(λ). One important corollary of our analysis is that

a(r), “the effective θ-angle” vanishes as a power of the energy in the IR,

θeff(E) ∼ E3(logE)
1
2 (1.19)

This is an interesting result as it indicates that the YM dynamics screens the UV

θ-angle.

Before continuing we will comment on what we hope to achieve with this approach.

As it will become evident, this phenomenological approach does not have at this point

the status of well controlled approximation. Therefore at best we can hope to achieve the

following:

1. To provide a successful and predictive phenomenological model with few parameters.

A good analog of such a model is the Lund Monte Carlo that describes hadronization

in high energy collisions using a basic string model and a dozen parameters.

2. If item 1 turns out to be successful, such a model can provide intuition and data, to

guide serious searches for constructing a string theory for QCD.

3. It may provide hints for new phenomena in the theory. A good such example may

turn out to be our observation that the IR θ-angle in large-Nc QCD vanishes.

This introduction summarizes the present paper as well its companion [20] that should

be read as a natural continuation of this one. The structure of this paper is as follows.

In the next section we describe in detail the gravitational set up used to explore the

duals of QCD-like gauge theories. In particular we analyze the general form of the scalar

potential.

In section 3, we analyze the equations of motion for the coupled scalar-gravity system

and derive the precise relation between the full β-function of the gauge theory and the

scalar potential.

In section 4, we derive the UV asymptotics of the solutions close to the AdS boundary,

using the gauge theory input, namely asymptotic freedom. Then, we discuss the qualitative

features of a class of IR asymptotics in the deep interior of the geometry that lead to

confinement. This section also includes a detailed discussion of the α′ corrections near the

boundary. In particular, we show that in the expansion near the UV, the α′ corrections

are always accompanied with the scheme-dependent β-function coefficients.

Section 5 is devoted to specific examples of geometries that follow from a certain

choice of the scalar potential. In section 5.1 we present a simple geometry that displays

asymptotic freedom in the UV and linear confinement in the IR. This example is used
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in [20] to compute the glueball spectra. In section 5.2 we present a sample geometry that

displays a Banks-Zaks type fixed point in the IR.

Section 6 investigates the fluctuations of the various fields in the geometry and how

the dilaton potential (ie. the perturbative β-function) modifies the fluctuation equations

near the UV boundary.

Various appendices detail our computations. In appendix A, we present a detailed

analysis of the expansion near the UV. In appendix B we analyze a general form for the

action of a dilaton-axion-gravity system that incorporates the α′ corrections by assuming

general forms in the kinetic terms for these fields. We derive general solutions of the

action and determine the α′ corrections (in the UV), to the various quantities used in

the bulk-boundary identification. Appendix C describes the geometry that follows from

the naive effective potential which ignores the α′ corrections and studies the fluctuations

around the AdS vacuum of this potential. In appendix D, we analyze the solutions to the

coupled Einstein-scalar system with an exponential potential. We derive and classify all

the solutions and describe the fixed points. Finally, appendix E presents another example

of a geometry that approaches to a conformal fixed point in the IR with an exponential

tail in the β-function.

As Part II of this work is an essential sequel of this paper we briefly review here its

structure. It is mainly devoted to the analysis of the non-perturbative regime of our con-

struction, i.e. to the IR properties of the 5D geometry. There, the general classification of

IR asymptotics which lead to confinement is given. The qualitative features of the glueball

spectra are discussed, and a relation is established between the existence of a mass gap

and the confining property of the QCD string. The dependence of the spectrum on excita-

tion number is discussed, and the IR asymptotics that lead to a linear glueball spectrum

are identified. The analysis is extended to mesons, indicating that the setup provides a

concrete realization of the holographic implementation of chiral dynamics proposed in [24].

The properties of the 5d axion are discussed, and what they may imply for the QCD

θ-parameter. Finally, numerical computations of glueball spectra in concrete models are

performed. The models are defined in terms of an exact β-function that interpolates be-

tween the desired UV and IR asymptotics. The detailed structure of the Part II can be

found in its introduction.

2. Motivating the gravitational dual of a large-Nc gauge theory

The gauge theories of interest in this paper, are four-dimensional U(Nc) gauge theories at

large Nc. In particular, we assume the presence of no further adjoint fields, and therefore,

the holographic dual theory is expected to live in five dimensions. Fundamental matter can

be present but we will assume here that the number of flavors Nf ≪ Nc. Therefore, quarks

can be eventually incorporated as four-brane probes inside the five-dimensional geometry.

2.1 The spectrum

The relevant non-critical string is therefore five-dimensional.8 As there are no fermionic

8For a similar discussion of the spectrum, see [25]
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gauge-invariant operators in pure YM theory we do not expect the associated string theory

to have space-time fermions, (No NSR and RNS sectors).

From the NSNS sector we will obtain as low lying fields a metric gµν , a dilaton, φ and

a two-index antisymmetric tensor Bµν . The generic bulk fields should be in one-to-one

correspondence with the low-dimension gauge-invariant operators of the gauge theory. In

particular the (classically) traceless stress tensor Tµν = Tr[F 2
µν− 1

4ηµνF
2] is dual to the five-

dimensional graviton gµν . Tr[F 2] is dual to the dilaton φ. Bµν is expected to be dual, in

analogy with N = 4 sYM, to a higher dimension operator of the form Tr[dabcF
aF bF c] [30].

As it will be trivial in the vacuum solution, due to Lorentz invariance, we will neglect it in

the sequel. It is however expected to generate a tower of 1−+ glueballs in the theory.

The RR sector massless fields are summarized into the tensor product of two 5-

dimensional spinors. The product of two five-dimensional spinors gives the fields strengths

F0, F1, F2, F3, F4, F5. There is an automatic duality condition for this product that relates

F5 ∼ F0, F4 ∼ F1 and F3 ∼ F2. Therefore only F0, F1, F2 are independent.

F1 = dC0 generates an axion field C0 = a that is dual to Tr[F ∧F ] in the YM theory.

The dual of the axion field-strength is a four-form field strength F4 and the associated

three-form C3 couples to domain walls (that separate different k-vacua).

F5 = dC4 ∼ F0 generates a four-form that seeds the D3 branes responsible for the

U(Nc) gauge group. Its dual is a zero-form field strength that couples to bulk instantons.

Finally F2 = dC1 generates a vector and its presence seems puzzling as there is no

candidate YM operator that it is dual to. It turns out however that such a form couples

minimally to the baryon density on flavor branes [24], and its presence is therefore justi-

fied. It is certainly trivial in the QCD vacuum as it will break four-dimensional Lorentz

invariance otherwise. Its kinetic term is suppressed by 1/N2
c as that of the axion. It can

however be used to turn non-trivial baryon number densities in QCD. It is expected to

generate a tower of spin-1 glueballs comparable in profile to the 0−+ ones. We will analyze

it further in [20].

We would like at this point to stress that the presence of RR fields is important with

matching with the behavior expected from QCD. In particular, the special dependence on

the dilaton of terms in the effective action containing RR fields (in particular the axion),

is in complete agreement with the large Nc suppression we expect for such terms in the

gauge theory.

Flavor is expected to be generated by space filling D4 + D̄4 brane pairs filling (most

of) the five dimensional bulk. They couple individually to a C5 form. Overall neutrality is

needed however as it equivalent to anomaly cancellation in the YM theory.9 As the branes

are space-filling, the coupling to C5 will not play a role. Subleading couplings to other RR

fields are essential though and will be discussed in [20].

The structure of the RR sector is similar to what we would obtain from an orientifold

of the 0B theory [42, 43, 16] compactified to 5 dimensions. Several authors advocated the

relevance of a closed string tachyon in the vacuum structure of QCD motivated by the

9This appears to be rather general in holographic setups. Cancellation of bulk RR charges is equivalent

to the absence of gauge anomalies of the large-Nc boundary theory.
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ten dimensional type-0 string theory. When Nf = 0 we see no place for such a closed

string tachyon, as there is no such low-dimension gauge-invariant operator in the gauge

theory. If type-0 theory has any connection to pure YM theory, then the ten-dimensional

tachyon must become rather massive in the five-dimensional theory. Of course if we add

Nf flavor branes with Nf ≪ Nc then the open string tachyon is essential for understanding

meson physics, [24]. However, the tachyon profile does not back-react to correct the gauge

theory vacuum in this case. A (closed) string tachyon may be relevant in understanding

the vacuum structure of QCD in the Veneziano limit, Nf ∼ Nc. In this case it is the avatar

of the open string tachyon of the flavor branes, which, because of their large number is

becoming effectively a closed string state (in the sense that it affects the vacuum structure

at leading order in 1/Nc).

To summarize, when Nf = 0 the relevant propagating bulk fields are gµν , φ, a, while

there is also a non-propagating F5 field strength. When Nc ≫ Nf 6= 0, there is also an

open string tachyon T (together with gauge fields on the flavor branes), which is a Nf ×Nf

complex matrix charged under gauge fields of the U(Nf )L × U(Nf )R symmetry, [24]. In

this paper we will not consider the dynamics of flavor. But we will include the contribution

of the tension of flavor branes in the effective action in this section only to indicate the

scaling of various terms in the effective dilaton potential.

2.2 The associated branes

There are several potential branes associated to the various bulk form fields that exist in

the theory. The RR four-form couples to D3 branes, responsible for generating the gauge

group.

The RR zero form, dual to the YM θ-angle couples electrically to D−1 instantons,

which should be indeed the YM instantons. It is interesting to mention here that such

bulk instanton solutions in the AdS5 case were identified with the standard YM instanton

solutions with the dependence on the radial holographic coordinate playing the role of

instanton size. In our case we expect that small instantons, as they will be close to the

AdS5 boundary, resemble almost accurately the standard YM Instantons. Large instantons

however, feel the non-trivial IR geometry and their form is expected to part substantially

from the standard YM form. It may be interesting to study them as they might indicate

the correct instanton measure in the IR of YM theory. This should be the five-dimensional

volume form in the non-trivial metric that describes the YM vacuum, together with a

power of the dilaton that needs to be determined.

The magnetic duals of the D−1 instantons are D2 membranes and they couple mini-

mally to the dual C3 form. They are domain walls in four-dimensions separating different

k-vacua. A point-like D2 generates a monodromy for the bulk axion field in the transverse

two dimensional space.

There are also point-like D0 branes coupled to the RR one-form C1. They are the

baryon vertices which can tie up Nc quarks to form a large-Nc baryon. Their duals are

D1 strings that couple to the dual two-form C2, which represent the flux tubes stretched

among magnetic quark sources. They will be used in [20] to investigate the interaction

between magnetic quarks in confining vacua.
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Finally in the NSNS sector we have NS0 branes that are five-dimensional duals of the

fundamentals strings. They are charged magnetically under the NSNS two-form Bµν , and

couple directly to the flavor U(1) gauge-fields. The S-duality map would suggest that they

can be viewed as vertices for magnetic baryons. This is in agreement with the fact that such

magnetic baryons are expected to have masses that scale as O(N2
c ) compared to ordinary

baryons whose masses are of order O(Nc). The reason is that they contain Nc magnetic

quarks, each having a mass of order Nc.
10

2.3 The effective action

The (minimal) two-derivative effective action of the perturbative string theory is

S5 = M3

∫

d5x
√
g

[

e−2φ

(

R+ 4(∂φ)2 +
δc

ℓ2s

)

− 1

2 · 5!F
2
5 − 1

2
F 2

1 − Nf

ℓ2s
e−φ

]

(2.1)

where as usual F1 = ∂µa and we have used the 5-form instead of the zero form. The last

term is due to space filling D4 − D̄4 brane pairs, with Nf is proportional to the number of

flavor branes. We have explicitly indicated the string scale ℓs and the Planck scale

M3 =
1

g2
sℓ

3
s

, δc = 10 −D = 5 (2.2)

Anticipating the connection with the gauge theory let us define,

λ = Nce
φ. (2.3)

Passing to the Einstein frame by gµν = λ
4
3 gE

µν we obtain:

S5 = M3

∫

d5x
√
g

[

N2
c

(

R− 4

3

(∂λ)2

λ2
+
δc

ℓ2s
λ

4
3

)

− λ−
10
3

2 · 5!F
2
5 − λ2

2
(∂a)2 −N2

c

Nf

Ncℓ2s
λ

7
3

]

.

(2.4)

We are now at the point where we can solve for the five-form (that controls the number

of D3 branes). Starting from the Einstein frame action

δS5 = − M3

2 · 5!

∫

d5x
√
g λ−

10
3 F 2

5 , (2.5)

the equations of motion are d∗(λ−
10
3 F5) = 0 with the solution

Fµ1···µ5 =
Nc

ℓs
λ

10
3 Eµ1···µ5 ≡ Nc

ℓs
λ

10
3

ǫµ1···µ5√− det g
, (2.6)

where E is the totally antisymmetric tensor and Nc is dimensionless and proportional to

the number of colors. This is the definition of Nc, and it is obviously unormalized,

unless we know explicitly the D3 brane solution of the associated string theory. Inserting

back in the equations of motion and from this reconstructing the action, we obtain

δS̃5 = −M
3N2

c

2

∫

d5x
√
g e

10
3

φ (2.7)

10See however a slightly different interpretation in [25].
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so that

S5 = M3N2
c

∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
− λ2

2N2
c

(∂a)2 + V (λ)

]

(2.8)

with

V (λ) =
λ

4
3

ℓ2s

[

δc − xλ− 1

2
λ2

]

. (2.9)

Here we defined the ratio of number of flavors over the number of colors,

x =
Nf

Nc
. (2.10)

This potential is analyzed in detail in appendix C. It has a minimum at a finite O(1) value

of the t ’Hooft coupling11 2.3.

This gives rise to an AdS5 solution that was found and analyzed in [8], where it was

conjectured to describe the Banks-Zaks fixed points (for Nf ∼ Nc, i.e. x ∼ 1). One might

think that a dilaton flow around the AdS5 solution might describe the gauge theory physics

we are seeking. A study of the dilaton perturbations in appendix C shows however that

when Nf ≪ Nc, the dimension of the operator dual to the dilaton perturbation is well

above 6, and this does not compare well with the dimension-4 perturbation we are looking

for. On the other hand, it is expected that for Nf ∼ Nc, the solution will be importantly

affected by the tachyon field. Therefore an analysis in this case that neglects the tachyon

effects may be unreliable. Thus it is plausible that the AdS5 solution found is relevant for

gauge theories in their Veneziano limit, as argued in [8].

Another problem of this AdS vacuum is that, as we show in appendix C, the t ’Hooft

coupling at that point is of order one, and this is not something we expect in the UV region

of QCD.

We are therefore led to the suggestion that the UV of QCD should be described by

the φ → −∞ asymptotics of the potential in (2.8). To test this claim, we must study the

asymptotic solution of the classical equations and compare it to expectations from QCD.

To do this we make a Poincaré-invariant ansatz for the metric. The equations of motion

in the covariant form are,

Eµν − 4

3

[

∂µφ∂νφ− 1

2
(∂φ)2gµν

]

− 1

2
gµνV = 0 , �φ+

3

8

dV (φ)

dφ
= 0. (2.11)

with the Einstein tensor defined as,

Eµν = Rµν − 1

2
Rgµν , (2.12)

We neglect the QCD axion a in our system as it is not expected to affect this solution.12

11We stress again that this is the definition we use for the ’t Hooft coupling and it is unormalized.
12In large-Nc theories with strong IR dynamics like QCD, Witten has argued long time ago [26], that

although instanton effects seem negligible at large-Nc, there is non-trivial θ dependence in QCD dynamics.

This is in particular responsible for the resolution of the η′ mass problem via the Witten-Veneziano mecha-

nism, [27]. Although we expect via such considerations a to have a non-trivial profile in five dimensions, its

“order of magnitude” is O(1/Nc) and therefore its back-reaction to the other bulk fields can be neglected

to leading order [28].
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Let us digress here to introduce the following two coordinate systems we use in the

paper. The “conformal” coordinate system is given by,

ds2 = e2A(r)
[

dr2 + ηijdx
idxj

]

, (2.13)

and the “domain wall” coordinate system is given by,

ds2 = e2A(u)
[

ηijdx
idxj

]

+ du2. (2.14)

The two are related by,13

du = eA(r)dr. (2.15)

The advantage of the conformal variable r is that in an asymptotically AdS background,

it is directly related to the energy of the gauge theory as E = 1/r in the far UV. Also

the corrections to the AdS metric that we describe in this paper take the simple form

of log r. On the other hand, the domain-wall coordinate u facilitates the solution to the

differential equations and uncovers the relation between the integration constants and the

related gauge theory quantities. Henceforth, we will denote by prime, a derivative with

respect to u and by dot, a derivative with respect to r.

The equations of motion in the conformal coordinate read

12Ȧ2 − 4

3
φ̇2 − e2AV = 0 , 6Ä+ 6Ȧ2 +

4

3
φ̇2 − e2AV = 0 (2.16)

φ̈+ 3Ȧφ̇+
3

8
e2A dV

dΦ
= 0 (2.17)

We shall also need the Einstein’s equations and the scalar field equation in the domain-wall

coordinate, in the following form:

A′2 =
(φ′)2

9
+
V

12
, A′′ = −4

9
(φ′)2, (2.18)

φ
′′

= −4A′φ′ − 3

8

dV (φ)

dφ
. (2.19)

What type of solution do we expect in the UV regime (r → 0) (or u→ −∞)? As QCD

becomes scale invariant at E = ∞, we expect the space to asymptote to AdS5. Moreover

as 1
λ ∼ logE we expect that e−φ ∼ − log r. Therefore, the geometry is expected to be

AdS5 modulo logarithmic corrections. This asymptotic expansion is described in detail in

appendix A.

The potential in (2.8) as φ→ −∞, behaves as V ∼ eaφ with a = 4
3 . In appendix D we

analyze in detail the solutions to the single exponential potential. We show that in such

cases the asymptotics of the metric is quite different from the expected behavior outlined

above. Indeed one finds, as r → 0,

eA(r) ∼
{

r
16

9a2−16 if a 6= 4
3

er if a = 4
3 .

13For simplicity we denote the warp factor in both of the coordinate systems by A i.e. A(u) = A(r(u)).
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In fact, the dilaton potential that has the desired behavior in the UV, must asymptote

to a (positive) constant, as φ→ −∞. The natural question is whether such a constant can

appear from string theory considerations.

In five dimensions there are higher-order α′ corrections, that contribute to the dilaton

potential. This may sound implausible, as such corrections carry a number of derivatives

and are not therefore part of the potential. However, it should be remembered that the bulk

theory contains the (non-propagating) four-form C4, which is responsible for the charge of

D3 branes sourcing the bulk solution. Its field strength is F5. At the quadratic level, it

generates the e
10
3

φ term in the potential, upon dualization. It goes without saying that its

higher-derivative avatars in the effective action will contribute several more terms in the

dilaton potential. For example the n-th order term (on the sphere) in the α′ expansion is

Sn ∼ M3

ℓ2−2n
s

∫

d5xe2(n−1)φ√g (F5)
2n (2.20)

where the dilaton dependence is dictated by the special transformation properties of RR

field strengths. As explained in detail in appendix B, upon dualization, such terms translate

into a dilaton potential of the form

VF5 ∼ e
4
3
φ

ℓ2s

∞
∑

n=0

an (Nce
φ)2n (2.21)

where the an are dimensionless numbers reflecting the coefficients of the higher derivative

terms like (2.20). Note that we included the central charge deficit as the first term in this

potential.

This potential is remarkable for two reasons. Firstly, it is a function of the ’t Hooft

coupling λ ∼ Nce
φ, and remains finite in large-Nc perturbation theory. The second is that

it has a regular expansion for small ’t Hooft coupling. On the other hand it does not contain

the term we are looking for, namely a (positive) constant. In appendix B.3 we indicate how

such an effective term, generating an asymptotic AdS regime can be generated by higher

curvature corrections. We will not however pursue this line of thought here, instead we

will add such a term to the dilaton potential by fiat, as was also done in [12] for example.

The next question to address is what the other terms in the potential should be in

order to reproduce the expected logarithmic running of the gauge theory coupling constant

λ, that is compatible with QCD perturbation theory. To answer this question, one must

identify the UV energy variable, and this is essentially the coordinate r up to logarithmic

corrections. Matching then the expected equation

dλ

d log r
= β(λ) = −b0λ2 + b1λ

3 + b2λ
4 + · · · (2.22)

with the bulk equations of motion in (2.16), (2.17) we obtain that the weak-coupling

expansion of the potential should be

V (λ) =

∞
∑

n=0

Vn λ
n (2.23)

– 17 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
2

To leading order, λ ∼ Nce
φ as can be ascertained by the world-volume couplings of D3

branes.14 Higher α′ corrections involving the five-form on D3 branes can change this

identification to

λ =

∞
∑

n=0

cn (Nce
φ)(2n+1) (2.24)

as is shown in appendix B.2. In case of N = 4 YM, the leading coefficient is c0 = 4π.

However, in general we consider a possible multiplicative renormalization in the identifica-

tion of λ, hence we keep c0 arbitrary. Moreover, changing c0 is equivalent to changing b0
the first β-function coefficient. Therefore we will eventually set c0 = 1 and we will allow

ourselves to vary b0 to reflect this normalization ambiguity.

Such corrections affect the β-function beyond the first two non-trivial orders, (as-

sociated to b0, b1). Since higher coefficients are non-universal, we choose to neglect the

renormalizations in (2.24), and set cn = 0 for n ≥ 1. In the analysis of appendix A we have

set c0 to 1. Reinstating it here we obtain

V (λ) =
12

ℓ2



1 +
8

9
(b0λ) +

23 − 36 b1
b20

34
(b0λ)2 − 2

324 b2
b30

+ 124 + 189 b1
b20

37
(b0λ)3 + O(λ4)





=
12

ℓ2

[

1 +
8

9
(b0c0Nce

φ) +
23 − 36 b1

b20

34
(b0c0Nce

φ)2

−2
324 b2

b30
+ 124 + 189 b1

b20

37
(b0c0Nce

φ)3 + · · ·
]

(2.25)

where ℓ is the AdS radius. We conclude that without knowledge of c0, the effective one-loop

term beff0 = b0c0 is unknown.

In appendix A it is shown that changing the constant b0 amounts to a redefinition of

the perturbative QCD scale Λ as well as a redefinition of the non-universal coefficients of

the β-function. This is nicely reflected in the fact that the dilaton potential (2.25) depends

only on the invariant ratios bi/b
i+1
0 . Moreover as shown in the same appendix, the first

logarithmic correction to the UV AdS metric is universal, and in particular insensitive to

either b0, or c0. In view of the above, we will postulate from now on, a dilaton potential

with a weak coupling expansion as in (2.25) with c0 = 1.

3. Holographic large Nc YM: the vacuum structure

Before we embark on a study of the solution to the equations of motion that describes the

vacuum structure of the theory, we review the action we are going to use

S = M3N2
c

∫

d5x
√
g

[

R− 4

3

(∂λ)2

λ2
− Z(λ)

2N2
c

(∂a)2 + V (λ)

]

(3.1)

14If the space has more than five dimensions or there are other bulk scalar field involved, this identification

can change. However this is not the case here. Another issue involves finite renormalizations of the ’t Hooft

coupling identification. Such corrections cannot be excluded but they cannot affect the qualitative analysis,

as they involve a constant rescaling of the dilaton. We choose therefore to ignore them.
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with

V (λ) =
12

ℓ2

(

1 +
∞
∑

n=1

Vnλ
n

)

=
12

ℓ2

(

1 +
8

9
b0λ+

23b20 − 36b1
81

λ2 + · · ·
)

(3.2)

and where we have added a general kinetic function Z(λ) in front of the axion. As the axion

kinetic energy is suppressed by 1/N2
c it will be neglected in the following investigation of

the vacuum solution. In the action (3.1), Nc appears only as an overall coefficient, i.e. it

only changes the definition of the 5-dimensional Planck scale. Therefore in the large Nc

limit, quantum corrections can be safely neglected, as in the standard, critical AdS/CFT

correspondence. All kinetic and potential terms are independent of Nc when written in

terms of λ. Therefore, it is useful to define an “effective” dilaton field by

Φ ≡ log λ = φ+ logNc. (3.3)

From now on, this is the field we will use, and we will refer to it as the “dilaton” without

any further specification.

3.1 General geometry and the geometric invariants

In this section we introduce a rewriting of the equations of motion that facilitates the

construction of the desired 5D geometry and its connection to the gauge theory. We allow

for a general dilaton potential V (Φ) in (3.1) that admits an expansion of the form (3.2) for

small λ.

We start from the domain-wall parametrization of the metric in (2.14). We use the

Einstein’s equations (2.18) and the scalar field equation (2.19). It is a well-known fact that

these second-order equations can be reduced to a system of first-order equations.15 This

is generally done by introducing a superpotential.16 Here we find it more convenient to

rewrite the equations in terms of the derivative of the superpotential with respect to the

dilaton. For this purpose, we introduce the phase space variable X:

X =
Φ′

3A′ , (3.4)

This variable is useful in our set-up as it is closely related to the gauge theory β-function.

In terms of X, the second order system can be rewritten as the following first-order

system of equations,

(Φ′)2 =
3

4
V0X

2e−
8
3

R Φ
−∞ X dΦ, (3.5)

(A′)2 =
V0

12
e−

8
3

R Φ
−∞ XdΦ, (3.6)

dX

dΦ
=

(

8X + 3
d log V

dΦ

)

(X2 − 1)

6X
. (3.7)

Here, V0 > 0 is the asymptotic value of the dilaton potential as Φ → −∞. Given X as a

function of Φ, one solves (3.5) to determine the dilaton and (3.6) to obtain the geometry.

15This well-known technique in differential equations was discussed in this context in [29].
16It goes without saying that this amounts to choosing one of the two initial conditions for the dilaton.
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Our strategy in solving the system of equations is essentially reversing (3.7) and determining

the potential V (Φ), given the function X(Φ). In the next subsection, we explain how to

determine X, by using the gauge theory input. It is completely determined by the full

β-function of the gauge theory. We analyze certain fixed points of (3.7) in the appendix D.

Here, we assume that X is known, and calculate the invariants of the geometry. This

is necessary in order to understand the singularity structure of the solution in the IR.

We solve (3.7) for V as follows:

V (Φ) = V0(1 −X2)e−
8
3

R Φ
−∞ X dΦ, (3.8)

where V0 > 0.

The leading scalar invariants, that are constructed from the Einstein tensor (defined

in (2.12)) are,

E ≡ Eµ
µ = 30(A′)2 + 12A′′, (3.9)

EµνE
µν = 36

(

5(A′)4 + 4A′′(A′)2 + (A′′)2
)

. (3.10)

Using the equation of motion (2.18) together with (3.5) and (3.6), we obtain the following

results for the first-order invariant:

E = V0(
5

2
− 4X2)e−

8
3

R Φ
−∞ XdΦ, (3.11)

We show in the next section that the presence of an asymptotic AdS geometry near the

boundary requiresX → 0 there. From (3.11) we observe that E → 5V0/2 there, as expected

from the AdS geometry. This provides a consistency check of our formulae. The second

order invariant is,

E · E =
V 2

0

8
(2 − 11X2(1 −X2))e−

16
3

R Φ
−∞ XdΦ. (3.12)

We also present the relation of the phase variable and the superpotential. In 5D, the

superpotential is obtained from the scalar potential by solving,

W 2 −
(

3

4

)2(∂W

∂Φ

)2

=

(

3

4

)3

V (Φ). (3.13)

The first order equations that follow from this superpotential are,

A′ = −4

9
W , Φ′ =

dW

dΦ
. (3.14)

Comparison of (3.14) with (3.6) and (3.5) shows that the superpotential is given as,

W =
9
√
V0

8
√

3
e−

4
3

R Φ
−∞ X dΦ. (3.15)

It is also useful to note that X is proportional to the derivative of the logarithm of the

superpotential:

X = −3

4

d logW

dΦ
. (3.16)
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3.2 The phase variable X and the β-function

In this section, we show that given i) the relation between the ’t Hooft coupling λ and φ

and ii) the relation between energy scale of the gauge theory, and the radial variable of

the 5D geometry, one can relate the phase space variable that we introduced in (3.4) to

the β-function of the gauge theory. Both relations receive α′ corrections, but we shall first

ignore them and consider their effects in section 4.2.

To fix the first relation, we consider the metric (2.14) in the Einstein frame. There

are at least two arguments that lead to the energy-radius dependence: The first is the

Polchinski-Strassler type of argument [31] that uses the gravitational red-shift to relate

E =
√
g00 Ebulk, (3.17)

where the l.h.s. is the energy in 4D field theory measured by an observer on the boundary

of the 5D geometry and the r.h.s. is the energy of a point-like excitation of the gravitational

system. This gives,

log(E) ∝ A. (3.18)

The second argument is to make an infinitesimal shift u → u + δ in the metric and to

observe that this shift can be produced by a dilatation xµ → (1 + ρ)xµ. This dilatation

changes the 4D energy by, log(E) → log(E) − ρ. Equivalently, one makes the above shifts

in u and x and demands that the metric does not change to first order in ρ. This fixes,

ρ = −A′δ

hence one arrives at the same result (3.18).

We note that the relation (3.18) is the most natural in an asymptotically AdS geometry

where A → −u/l as u → −∞ and one identifies logE = u in the original AdS/CFT

correspondence ([33]). However, we stress that any function whose leading behavior agrees

with (3.18) in the UV is a candidate definition for the field theory energy.

Another necessary condition is to have a monotonically decreasing function of the radial

variable u. This is necessary in order to have a well-defined direction for the renormalization

group flow. From the Einstein’s equation (2.18), it is clear that (3.18) is guaranteed to

satisfy this criterion. This is because, it follows from (2.18) that A′ is a monotonically

decreasing function of u. Since it is already negative at u = −∞, A′ is forced to be

negative in the entire range of u. Thus, A itself should be a monotonically decreasing

function of u.

We should also note that the scale factor of the metric in the Einstein frame is expected

to be associated to the C-function of the associated theory. In particular with our definition

we expect that E4 ∼ e4A is proportional to the number of degrees of freedom of the theory

with energy up to E.

Now, we come to the identification of the β-function. As discussed in section 2, we

identify the ’t Hooft coupling as:

λ = Nc e
φ ≡ eΦ. (3.19)
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where we chose to set the coefficient c0 to one here by reabsorbing it in the potential.

On the other hand, the β-function of the gauge theory is given by,

β(λ) =
dλ

d log(E)
=
dλ

dA
. (3.20)

The definition of the phase variable X in (3.4) together with the gauge theory-geometry

relations (3.18) and (3.19) leads to the following identification of the bulk and boundary

quantities:

X =
β(λ)

3λ
. (3.21)

In the next section, we shall make use of (3.21) in order to formulate restrictions on the

geometry that follow from the desired properties of the gauge theory.

4. Asymptotics of the geometry

4.1 Asymptotic freedom and the UV geometry

In an asymptotically free gauge theory, the ’t Hooft coupling behaves as,

λ ∝ 1

logE
, for large E. (4.1)

Using our identification of the energy scale of the gauge theory with the scale factor of

the metric in the Einstein frame, i.e. logE ∝ A, we learn that this requirement means,

Φ ∝ − logA, or in terms of the phase-space function X,

X ∝ − 1

A
∝ −λ. (4.2)

Making use of (4.2) in (3.8), one learns that the geometry dual to an asymptotically free

gauge theory, requires the following form of the scalar potential near λ = 0:

V = V0 + V1λ+ · · · (4.3)

as was already announced in section 2. Therefore asymptotic freedom in the UV requires

an asymptotically AdS5 geometry. In addition to this, it requires an expansion of the

form (4.3) around λ = 0. In particular, the presence of the first order term V1 is crucial

for the (leading) logarithmic running of the coupling constant.

One can easily make a consistency check on the condition, (4.2). Having an AdS

geometry in the UV gives A ∝ u near the boundary (u → ∞). Therefore, near the

boundary we have,

λ ∝ 1

u
. (4.4)

Using the eq. (3.6) or (3.5) we see that this results in the following asymptotic form for X:

X ∝ λ+ O(λ2), as λ→ 0. (4.5)

In particular, as discussed in section 2, the simple set up in (2.4) does not satisfy this

asymptotics. Although we presented ideas on how the two requirements can be reconciled,

in this work we will assume the presence of the suitable dilaton potential.
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4.2 The α′ corrections

We now generalize the above discussion by taking into account the possible α′ corrections

near the boundary. As is clear from (3.8) the requirement (4.3) follows from requiring (4.5).

We would like to determine the asymptotics of X by taking into account the possible cor-

rections that fall into the following three classes. First, there is a subclass of the derivative

corrections to the Einstein-Hilbert action studied in appendix (B). Second, there are the

derivative corrections to the probe D3 brane action studied in appendix (B.2). The com-

bined effect of these corrections can be stated as,

λ = λs

(

1 + c1λ
2
s +

(

2a2c1 +
c2
2

+ c21

)

λ4
s + O(λ6

s)

)

. (4.6)

Here,

λs = eφNc, (4.7)

is a purely bulk quantity, while we use λ to denote the ’t Hooft coupling of the gauge

theory. The unknown coefficients ai and ci are defined in (B.2) and (B.39).

The third type of correction involves the definition of the gauge theory energy scale in

terms of the metric scale factor. Using the fact that all of the functions in the geometry

can be expressed in the variable λs, and that, in the far UV, the radial variable in AdS

exactly corresponds to the energy scale, we may write,

d logE

dA
= f(λs) = 1 + f1λ

2
s + f2λ

4
s + · · · (4.8)

with fi > 0, for all i. This expansion anticipates that the variable λs asymptotes to zero in

the UV, and this will be checked below. We note that a specific choice for the function f(λs)

corresponds to a specific scheme17 in computing the β-function of the field theory. The

reason that the expansion variable is λ2
s instead of λs is due to the form of the α′-expansion,

as derived in appendix B.3.

Now, we can connect X to β:

β =
dλ

d logE
=

dλ

dλs

dλs

dA

dA

d logE
=

dλ

dλs
3Xλsf(λs)

−1. (4.9)

Eqs. (4.6) and (4.8) give,

X = −b0
3
λ+

b1
3
λ2 +

(

b2
3

− 4

3
c1b0 +

f1b0
3

)

λ3 +

(

b3
3

+
4

3
c1b1 −

f1b1
3

)

λ4 (4.10)

+
1

3

(

b4 + b2(4c1 − f1) + 2c1f1b0 + c1b
2
0 − f2

1 b0 + f2b0 − 4a2c1b0 − 2c2b0
)

λ5 + · · ·

We remark that the first two terms are completely determined by the scheme independent

gauge theory input, i.e. the first two β-function coefficients, b0 and b1.
18 A very interesting

17The scheme dependence of the renormalization group running in the holographic setup has been dis-

cussed in [32].
18As explained earlier, in the correspondence of the bulk and the boundary quantities, neither b0 nor b1

but only the ratio b1/b2
0 has an invariant meaning as we do not know the correct normalization of λ
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corollary of (4.10) is that the unknown coefficients of the α′ expansion, namely ai, ci
and fi are always accompanied by the scheme dependent β-function coefficients b2, b3, . . . .

This, for example, makes it possible to set all the fi to zero by choosing an appropriate

scheme in the computation of the full β-function. In what follows we shall assume that

this scheme is chosen and we shall set fi = 0 for all i. We call it the “holographic scheme”.

A final observation in (4.10) is that the α′ corrections to the effective action discussed in

appendix B, (associated to ai), enter first at the fourth order in the expansion.

So far we have dealt with the α′ corrections near the boundary. The possible corrections

in the IR regime shall be discussed in section 4.4.

4.3 The UV geometry

We can obtain the UV asymptotics of the metric by using (4.10) and the formalism of the

previous subsection. The asymptotic form of the metric to leading, subleading and next to

subleading order, turns out to be independent of the corrections discussed above:

ds2 = e2
u
ℓ u

8
9
+2b( 4

9
−b)/u+···dx2 + du2, (4.11)

where ℓ is the radius of AdS5:

ℓ2 =
12

V0
. (4.12)

We have defined the following ratio of the β-function coefficients,

b =
b1
b20
. (4.13)

This ratio has the interesting property that it is left invariant under a multiplicative renor-

malization of the coupling constant. This follows from the Gell-Mann-Low equation and

explained in detail in appendix A.

On the other hand, the asymptotic form of the dilaton to subleading order is,

b0λ =
ℓ

u
+ (b− 4

9
) log u+ · · · (4.14)

One can also easily obtain the asymptotic form of the Ricci scalar and find that R →
−20/ℓ2: We have the AdS5 geometry in the UV and the subleading term in (4.11) can be

viewed as a perturbation on AdS5.

We also present the same asymptotics in the conformal r-coordinate system:

ds2 =
ℓ2

r2

(

1 +
8

9

1

log(rΛ)
− 8

9
b
log(− log(rΛ))

log(rΛ)2
+ · · ·

)

(

dxidxi + dr2
)

(4.15)

λ = − 1

b0 log(rΛ)
+

b

b0

log (− log(rΛ))

(log(rΛ))2
+ · · · (4.16)

where ℓ is the AdS radius and Λ is an integration constant, that corresponds to the per-

turbative QCD scale in the dual theory.

We remark that the leading and the subleading terms in the metric, (4.11), depend

neither on the energy-radius coefficients fi, nor on the particular β-function coefficients bi.
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Therefore the first terms in (4.11) are universal and solely follow from the requirement of

asymptotic freedom. However, the subleading term of the metric already introduces the

invariant QCD scale Λ. Of course the information on the β-function is encoded in the

leading term of the dilaton solution.

4.4 Confinement and the IR geometry

Given the geometry, a natural question to ask is whether or not this geometry describes

quark confinement in the IR. On the gauge theory side, a criterion for confinement is that

the Wilson loop operator exhibits an area law behavior at large distances. This corresponds

to an asymptotic linear potential between two external quarks. In the 5d dual this criterion

can be tested by calculating the classical action of a fundamental string world-sheet that

extends to the Wilson loop at the AdS5 boundary, as argued in [34, 35].

A detailed analysis with a classification of all the confining backgrounds is presented

in [20]. Here we would like to discuss the qualitative features of the set-up by focusing on

one class of asymptotics:

X(λ) = −1

2

[

1 +
a

log λ
+ . . .

]

, λ→ ∞ (4.17)

The asymptotics of the geometry can be obtained using the definition (3.4):

A = A0 +
1

3

∫ λ

0

dλ′

λ′X(λ′)
, (4.18)

and Φ from (3.5). In the conformal variable, one obtains the following IR asymptotics (as

r → ∞)

A = −Crα + subleading, (4.19)

where C is an integration constant and we have defined,

α =
3

3 − 4a
. (4.20)

The dilaton behaves as,

Φ =
3

2
Crα + subleading (4.21)

It is shown in [20] that these backgrounds confine for α ≥ 1. To see this, one needs to take

into account the subleading term in (4.21). In the borderline case, α = 1, the geometry is

interesting and well-known. In the string frame the metric asymptotically becomes,

ds2 → dx2 +
4

9
dΦ2, Φ → ∞. (4.22)

This is the linear-dilaton background. The Ricci scalar in the string frame therefore van-

ishes in the IR. In the Einstein frame, the metric has a singularity at a finite value u = u0

(corresponding to r → ∞. There, the scale factor exp[A] shrinks to zero. This is due to the

fact that eΦ and therefore the gauge coupling diverge at that point. The stringy corrections

to the geometry in this regime can be neglected as in the string frame the background is

known to be exact to all orders in α′.
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The linear dilaton asymptotics are the borderline of confining backgrounds. The spec-

trum of mesons and glueballs is obtained by considering the fluctuations of the geometry.

Although exhibiting a mass gap, the spectrum is partly continuous for α = 1. Therefore,

we discard the borderline case α = 1 (a = 0) for physical reasons. In the case α > 1

however, the spectrum turns out to be discrete.

For α > 1 (or a > 0) the linear dilaton background in (4.22) is modified into the

following asymptotic metric:

ds2 → Φ
4a
3 dx2 +

4

9
Φ− 4a

3 dΦ2, Φ → ∞. (4.23)

The Ricci scalar in the string frame reads asymptotically ,

Rs ∼ −4a(7a− 3)Φ
4
3
a−2. (4.24)

We observe that for the confining backgrounds α > 1 (or 0 < a < 3/4) the string frame

Ricci scalar vanishes in the IR. This implies that the singularity in the string frame is only

due to the diverging dilaton. This is a good type of singularity where the string moving in

this background feels very small curvature corrections.

The effect of α′ corrections to the confinement criteria is an important question to

which we turn. Fortunately, as happens with “good” holographic singularities, the low-lying

fluctuations have an effective potential that shields them from the singularity. Therefore,

the α′ corrections are under control in this case, see [20].

Let us finally note the behavior of the dilaton potential and the various geometric

invariants in this region. The dilaton potential follows from (3.8):

V ≈ 3

4
V0λ

4
3 (log λ)

α−1
α

(

1 + O
(

1

log λ

))

. (4.25)

Similarly one obtains the following asymptotics for the geometric invariants in the Einstein

frame,

E ∼ R ∼ (∂Φ)2 ∼ λ
4
3 (log λ)

α−1
α . (4.26)

We see that this is the linear dilaton background with logarithmic corrections. In

the α = 1 case the leading behavior of the geometry is exactly that of the linear dilaton

background.

5. Examples of background geometries

In this section we present examples of full background geometries that exhibit the desired

UV and IR asymptotics discussed in the previous two sections. The first is an example

showing asymptotic freedom in the UV and confinement in the IR. For comparison, we

present an example which is asymptotically free in the UV, but has a conformal fixed point

in the IR. Finally, in appendix E we present a third example which is asymptotically free

in the UV and has a β-function that asymptotes to zero in the IR with an exponential tail.
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Figure 1: Dilaton potential as a function of λ for the solution studied in section 5.1.

5.1 Standard QCD type two-loop β-function

We start from the “exact” β-function:

β(λ) = − 3b0λ
2

3 + 2b0λ
− (2b20 + 3b1)λ

3

3(1 + λ2)
[

1 +
(2b20+3b1)

18a log(1 + λ2)
] . (5.1)

with b0,1 > 0, a > 0. This expression is chosen so that one has the desired asymptotics in

the UV and IR and such that there are no poles or branch cuts in λ. In particular at weak

coupling it reproduces the QCD result to two loops, β = −b0λ2 − b1λ
3 +O(λ4). At strong

coupling it behaves as β = −3
2λ + 3a λ

log λ + · · · as required by (3.21) and (4.17). It also

avoids unwanted singularities or branch points at finite values of λ.

According to (3.8) the dilaton potential that corresponds to this specific β-function is,

V (λ) = V0(1 −X(λ)2)(3 + 2b0λ)
4
3
(

18a+ (2b20 + 3b1) log(1 + λ2)
)

8a
3 , (5.2)

where the phase-space variable X(λ) is given by β(λ)/3λ. The equation that determines

the running of λ follows from, (3.5):

λ′ =
3

ℓ
X(λ)(3 + 2b0)

2
3

(

18a+ (2b20 + 3b1) log(1 + λ2)
)

4a
3 . (5.3)

We give the plot of the potential in figure 1. The solution of (5.3) as a function of u, with

the initial condition λ(0) = 0 is shown in figure 2.

We see from the figures that λ diverges in the IR at the singularity u0.

The associated geometry can be derived as follows. The metric in the string frame is,

ds2 = e2A+ 4
3
Φdx2 + e

4
3
Φdr2 = λ

4
3 (e2Adx2 + (λ′)−2dλ2). (5.4)
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Figure 2: The running of the coupling constant. It diverges at u0.

The metric function A is obtained as a function of λ from (4.18). Unfortunately, it is

not possible to express this integral in terms of elementary functions. The Einstein frame

metric is obtained from (5.4) by multiplying with λ−4/3. The asymptotics of this geometry

are discussed in the previous section.

One can also easily determine certain invariants of the geometry. The Ricci scalar is

given by (3.9) and R = −3/2E. In the Einstein frame, one obtains,

R = −3

2
V0(

5

2
− 4X(λ)2)(3 + 2b0λ)

4
3
(

18a+ (2b20 + 3b1) log(1 + λ2)
)

8a
3 . (5.5)

The asymptotic behavior of the various geometric invariants in this geometry are also

presented in the previous two sections.

5.2 β-function with an IR fixed point

We choose an exact β-function as

β(λ) =
−b0λ2 + b1λ

3

1 + 2b0
3 λ− 2b1

3 λ
2
, (5.6)

with

b1 = b1 − 2b20/3 > 0. (5.7)

In perturbation theory we have β = −b0λ2 + b1λ
3 + O(λ4) with b0,1 > 0.

According to (3.8) the potential for this specific β-function is,

V (λ) =
V0

(λ+)a+(−λ−)a−

(

(λ+ − λ)2(λ− λ−)2 − 1

4
λ2(λ0 − λ)2

)

(λ+−λ)a+−2(λ−λ−)a−−2.

(5.8)
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Figure 3: Dilaton potential as a function of λ when there is an IR fixed point. We have set

V0 = b0 = b1 = 1 for simplicity.

Here we defined the following quantities. λ0 = b0/b1 is the value of the coupling constant

at the IR fixed point. λ± is defined as:

λ± =
λ0

2
±

√

λ2
0 + 6

b1

2
, (5.9)

and the exponents are,

a± = −∓ 4

3

λ∓
λ+ − λ−

. (5.10)

We note that along the RG flow, the range of λ is such that, λ− < 0 < λ < λ0 < λ+.

We give the plot of the potential in figure 3. The RG flow is from λ = 0 in the UV

toward λ = λ0 in the IR. As we discussed in section 4 the UV geometry is AdS with the

radius given by eq. (4.12). As figure 3 suggests, the IR end of the potential is also AdS.

Below we present the details of the IR geometry. The IR AdS radius is obtained by

taking the λ→ λ0 limit in the potential, (5.8):

ℓIR = 2

√

3

Vf
, Vf = V0

(−λ−
λ+

)a+−a−

. (5.11)

We may deduce from (5.11) that Vf/V0 > 1. Therefore, the c-theorem of [36] is obeyed

for this holographic RG flow.

The equation that determines the running of λ follows from, (3.5) as,

λ′ =
(3V0)

1
2

2
λ2(λ0 − λ)(λ+ − λ)

a+
2

−1(λ− λ−)
a−
2

−1. (5.12)
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Figure 4: Running of the coupling constant in the Banks-Zaks case. We have set V0 = b0 = b1 = 1.

The solution of (5.12) as a function of u, with the initial condition λ(0) = 0 is shown in

figure 4. We observe that, λ flows into a non-trivial fixed point at low energies. The value

of the coupling constant at the fixed point is λ0 = b0/b1. As λ increases from 0 to λ0 during

the RG flow, one has the inequality λ− < 0 < λ < λ0 < λ+ in this range.

The metric in the string frame (5.4) is obtained by using (4.18) and (3.5) as,

ds2 = e
2A0+ 2

b0λλ
− 2b1

b20 (λ0 − λ)
2b1
b20 dx2 +

16

V0
(λ0 − λ)−2(λ+ − λ)−a+(λ− λ−)−a−

dλ2

λ
8
3

. (5.13)

One can also easily determine certain invariants of the geometry. The Ricci scalar is

given by (3.9) and R = −3/2E. In the Einstein frame we obtain,

R = −3

4
V0

(

5(λ− λ−)2(λ+ − λ)2 − 2λ2(λ0 − λ)2
)

(λ− λ−)a−(λ+ − λ)a+ (5.14)

Note that R goes to a constant in the IR, i.e. as λ → λ0. This is in accordance with the

presence of the fixed point in the IR. Similarly the invariant (∂Φ)2 follows from (5.13) as,

(∂Φ)2 = gλλ(∂λΦ)2 =
V0

16
λ2(λ− λ−)a−(λ+ − λ)a+(λ0 − λ)2, (5.15)

which vanishes in the IR as required from the conformality.

The IR asymptotics of the geometry can be obtained by solving the equations (3.6)

and (3.5) near λ0 (that corresponds to u = ∞). We present the geometry in the conformal

coordinate, by performing the change of variable (2.15). One finds,

ds2 =
l2IR
r2

(

1 +
1

rΛ

)−2
(

dx2 + dr2
)

, (5.16)
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near r → ∞. Here Λ is an integration constant of equation (3.5). The gauge theory

interpretation of Λ is the energy scale below which the conformality in the IR sets in.

We may determine the exact form of the quark potential and check that it indeed has

the conformal form in the IR. We find the following relation between the quark-anti-quark

potential and the distance in the IR asymptotics,

E =
C[λ0, b1]

2

L
, (5.17)

with the constant C is given by,

C[λ0, b1] =
2b

− 1
2

1√
3V0

λ
5
3
0

(λ+ − λ0)
a+
2 (λ0 − λ−)

a−
2

. (5.18)

This exhibits conformal behavior.

Of course, as the IR theory is conformal, we do not expect this model to be a good

for description of pure YM type theories. We have presented it however, for illustration

purposes.

6. Fluctuations near the boundary

The general geometry discussed in the previous section is asymptotically AdS near the

boundary, u→ ∞. It is important to study the fluctuations of the fields on this background.

According to the standard rules of AdS/CFT, near the boundary, these fluctuations should

correspond either to sources or expectation values of the corresponding operators of the

gauge theory. In what follows, we compute the UV asymptotics of the fluctuations keeping

the subleading terms as well. According to the principles of AdS/CFT these subleading

terms should give information on the anomalous dimensions of the operators dual to the

fluctuations.

For the case of a 5D geometry coupled to one scalar field the analysis of the fluctuations

have been carried out in [37, 38] (see also [39] and [40]). We are interested in the fluctuations

of the metric, the dilaton and the axion. The metric and the dilaton can be decomposed

into 4D traceless-transverse tensor hµν , two transverse gauge fields Aµ and Vµ and 5 scalar

fields.

The tensor modes obeys the usual 5D wave equation:

�5hµν = 0, (6.1)

where �5 is the scalar Laplacian on the 5D space-time:19

�5 = e−2A

(

d2

dr2
+ 3

dA

dr

d

dr
+ �4

)

. (6.2)

From (6.1), it is clear that the non-normalizable solution for hµν sources a dimension 4

operator. It is the energy-momentum tensor of the 4D boundary theory. Also it can be seen

that the vector fluctuations can completely be gauged away by using 5D diffeomorphisms.20

Thus, in what follows we focus on the interesting case of the scalar fluctuations.

19In this section we use the conformal coordinate system, eq. (2.13)
20This is strictly true only for the 4D massive modes, [40], which is the case we are interested in.
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6.1 Dilaton fluctuations

As discussed in detail e.g. in [40], there is a single diffeomorphism invariant combination

among the 5 scalar fluctuations:

ζ = ψ − 1

3X
χ. (6.3)

Here X is the variable defined in (3.4), ψ is related to the trace of the metric fluctuation

and χ is the fluctuation of the dilaton. We note from (4.2) that, for any asymptotically-free

boundary theory, X approaches zero in the UV. As a result, close to the boundary, ψ and

χ decouple from each other and ζ reduces to the dilaton fluctuation. In the conformal

coordinate system (2.13), it obeys the following equation:

ζ̈ + (3Ȧ+ 2
Ẋ

X
)ζ̇ − k2ζ = 0, (6.4)

where kµ is the 4D momentum.

It is interesting to comment on the correspondence of the gauge invariant scalar fluc-

tuation ζ, with the Yang-Mills operators. Indeed, it corresponds to the “dressed” Tr[F 2]

operator

ζ ↔ β(λ)Tr[F 2] (6.5)

which is known to be RG invariant (see for example [41]). The invariance of ζ under in-

finitesimal r reparametrizations, guarantees that it corresponds to a RG-invariant operator.

Using the asymptotic forms of the dilaton and the metric in (4.15) and (4.16) close to

the boundary, (6.4) becomes (in units where ℓ = 1),

ζ̈ − 1

r

(

3 +
2

log rΛ
+

C

log2 rΛ
− 2b

log(− log rΛ)

log2 rΛ

)

ζ̇ − k2ζ = 0, (6.6)

where b is defined in (4.13) and the coefficient C is given by,

C =
4

3
+ 2b(2 − log b0). (6.7)

The corresponding fluctuation equation in the pure AdS5 geometry is given by,

ζ̈ − 3

r
ζ̇ − k2ζ = 0, (6.8)

There are two independent solutions to (6.6), one is normalizable and the other is

non-normalizable. The asymptotic expansion of the non-normalizable solution reads,

ζsource = 1 − (kr)2

4

[

1 − 1

log rΛ
+

2 −C

2 log2 rΛ
+ b

log(− log rΛ)

log2 rΛ
+ · · ·

]

+
(kr)4

64

[

1 − 3

2 log rΛ
+

7 − 3C

4 log2 rΛ
+

3b log(− log rΛ)

2 log2 rΛ
+ · · ·

]

+ O(r6). (6.9)

According to the standard rules of the AdS/CFT correspondence this solution is dual to

a source term for a gauge-invariant operator of engineering dimension 4 and parity +1 in

the boundary gauge theory. As argued above such an operator is β(λ) TrF 2.
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The other solution of (6.6) is normalizable near the boundary and it has the following

asymptotic expansion:

ζvev = (kr)4
[

log2 rΛ + 2b log rΛ log(− log rΛ) +

(

2b− C − 1

2

)

log rΛ + · · ·
]

+ O(r6)

(6.10)

This solution corresponds to a VEV for TrF 2, namely a gluon condensate.

6.2 Axion fluctuations

The other scalar in the geometry is the axion. Its background value is non-zero if θUV 6= 0

and is obtained by solving

1√
g
∂µ [Z(Φ)

√
ggµν∂ν ] a = 0 (6.11)

in the Einstein frame. Z is an “effective” potential that resums higher-order corrections due

to the five form, as explained in appendix B.1. The background solution a(r) describes the

RG running of the QCD θ angle. As the axion is suppressed by extra powers of 1/Nc, [28],

this equation can be solved in the background already determined by the metric-dilaton

equations. We analyze it in detail in [20] where the vacuum condensate of Tr[F ∧ F ] is

calculated. Here we note that since the action for the axion is quadratic, its background

value does not affect its fluctuations that are dual to the Tr[F ∧ F ] operator in QCD.

The equation for the axion fluctuations follow from (2.4) and we obtain ,

α̈+

(

3Ȧ+ 2
Ż

Z

)

α̇− k2α = 0. (6.12)

The non-normalizable axion fluctuation corresponds to a source term for the operator

TrF ∧F and the normalizable solution is dual to a VEV for the same operator, 〈TrF ∧F 〉,
namely an axial glueball condensate. This will be further determined in [20].
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A. Asymptotic expansions in the (UV) weak-coupling regime

In this appendix we will carefully analyze the weak coupling expansion in the UV regime

of the space, near the boundary. We start from the equations of motion in the conformal

frame as described in section 2,

ds2 = e2A(r)
[

dr2 + ηijdx
idxj

]

, Err = 6Ȧ2 , Eij = 3
[

Ä+ Ȧ2
]

ηij (A.1)

where we use the mostly plus convention for the metric. The two scalar invariants of the

metric up to quadratic order are

Eµ
µ = −3

2
R = 6e−2A

[

2Ä+ 3Ȧ2
]

, EµνE
µν = 36 e−4A

[

Ä2 + 2ÄȦ2 + 2Ȧ4
]

(A.2)

In this ansatz the equations (2.11) become

12Ȧ2 − 4

3
φ̇2 − e2AV = 0 , 6Ä+ 6Ȧ2 +

4

3
φ̇2 − e2AV = 0 (A.3)

φ̈+ 3Ȧφ̇+
3

8
e2AV ′ = 0 , V ′ =

dV (φ)

dφ
(A.4)

To continue further we define the ’t Hooft coupling and its inverse as usual

λ = Nce
φ , αs =

1

λ
, φ̇ = − α̇s

αs
, φ̈ = − α̈s

αs
+
α̇s

2

α2
s

(A.5)

(A.3) and (A.4) become

− α̈s

αs
+
α̇s

2

α2
s

− 3Ȧ
α̇s

αs
+

3

8
e2AV ′ = 0 , 12Ȧ2 − 4

3

α̇s
2

α2
s

− e2AV = 0 (A.6)

We now change variables to

r = e−t , eA(t) = etd(t) , (A.7)

where t is essentially the log of the energy in the perturbative region. The equations become

−α
′′
s

αs
− 4

α′
s

αs
+
α′2

s

α2
s

− 3
α′

s

αs

d′

d
+

3

8
d2V ′ = 0 (A.8)

12

(

1 +
d′

d

)2

− 4

3

α′2
s

α2
s

− d2V = 0 (A.9)

where we now use primes for t derivatives.

We assume a regular power expansion for the potential

V = V0+V1λ+V2λ
2+V3λ

3+V4λ
4+· · · , V ′ = V1λ+2V2λ

2+3V3λ
3+4V4λ

4+· · · (A.10)

We now substitute for the inverse coupling

1

λ
= αs = L− b1

b0
logL+

b21
b20

logL

L
+

(

b21
b20

+
b2
b0

)

1

L
+

b31
2b30

log2 L

L2
+ (A.11)

+
b1b2
b20

logL

L2
+

[

b3
2b0

− b31
2b30

]

1

L2
+ O

(

1

L3

)

L = a0 + b0t = −b0 log(rΛ) , L′ = b0 (A.12)
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The expression above is taylored so that coupling satisfies the standard RG equation

λ′ = −b0λ2 + b1λ
3 + b2λ

4 + b3λ
5 · · · , α′

s = b0 −
b1
αs

− b2
α2

s

− b3
α3

s

+ · · · (A.13)

where Λ is the RG invariant scale of QCD.

We may rewrite now equations (A.8), (A.9) as

d′

d
=

1

8

αs

α′
s

d2V ′ − 4

3
− 1

3

α′′
s

α′
s

+
1

3

α′
s

αs
,

d′

d
= −1 +

√

d2V

12
+

1

9

α′2
s

α2
s

(A.14)

so that

1

8

αs

α′
s

d2V ′ − 1

3
− 1

3

α′′
s

α′
s

+
1

3

α′
s

αs
=

√

d2V

12
+

1

9

α′2
s

α2
s

(A.15)

Note that only one branch of the square root is relevant. We expand the potential in inverse

powers of logs to obtain21

V = V0 +
V1

L
+
V2

L2
+
b1
b0
V1

logL

L2
+

(

V3 −
b2
b0
V1 −

b21
b20
V1

)

1

L3
+ (A.16)

+
b21
b20
V1

(logL)2

L3
+

(

2
b1
b0
V2 −

b21
b20
V1

)

logL

L3
+ O

(

1

L4

)

αs

α′
s

V ′ =
V1

b0
+

(

2V2

b0
+
b1V1

b20

)

1

L
+

(

3V3

b0
+
b2V1

b20

)

1

L2

+

(

2b1V2

b20
+
b21V1

b30

)

1 + logL

L2
+ O

(

1

L3

)

(A.17)

From (A.15) we obtain

3

8
d2 =

V + αs
α′

s
V ′
(

1 + α′′
s

α′
s
− α′

s
αs

)

(

αs
α′

s
V ′
)2 ± (A.18)

±

√

[

V + αs
α′

s
V ′
(

1 + α′′
s

α′
s
− α′

s
αs

)]2
−
(

1 + α′′
s

α′
s
− 2α′

s
αs

)(

1 + α′′
s

α′
s

)(

αs
α′

s
V ′
)2

(

αs
α′

s
V ′
)2

Using

V +
αs

α′
s

V ′
(

1+
α′′

s

α′
s

−α′
s

αs

)

= V0+
V1

b0
+

(

2V2

b0
+
b1V1

b20

)

1

L
+

(

2b1V2

b20
+
b21V1

b30

)

logL

L2
(A.19)

+

(

3V3

b0
+

2b1V2

b20
− V2 −

b2V1

b20
+
b21V1

b30

)

1

L2
+ O

(

1

L3

)

21We thank Shesansu Pal for pointing out errors in the following two equations in the first version of this

paper.

– 35 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
2

we obtain

3

8
d2 =

b0
V1

(

1 +
b0V0

V1

)

− (2b0V0 + V1)(b1V1 + 2b0V2)

V 3
1 L

− b1(2b0V0 + V1)(b1V1 + 2b0V2) logL

b0V
3
1 L

2

+

[

−3b0(2b0V0 + V1)V3

V 3
1 L

2
+

4b0(3b0V0 + V1)V
2
2

V 4
1 L

2
− b20V2

V 2
1 L

2
+

2b1(4b0V0 + V1)V2

V 3
1 L

2

+
b2(2b0V0 + V1)

V 2
1 L

2
+
b1(b1V0 + b0V1)

V 2
1 L

2

]

±

±
[

b20
V 2

1

√

V0

(

V0+2
V1

b0

)

−
√

b0
(2b0b1V

2
0 V1+3b1V0V

2
1 −b0V 3

1 +4b20V
2
0 V2+6b0V0V1V2)

V 3
1

√

V0(2V1 + b0V0)L

+O
(

1

L2

)]

(A.20)

Compatibility to leading order with the first of (A.14) implies

V1 =
8

9
b0V0 (A.21)

for the plus sign. The minus sign does not lead to a consistent solution. Therefore to

leading order

3

8
d2V0 =

b0V0

V1

(

1 +
b0V0

V1

)

+

(

b0V0

V1

)2√

1 + 2
V1

b0V0
=

9

2
⇒ d2V0 = 12 (A.22)

Using (A.21), (A.20) becomes

3

8
V0d

2 =
9

2
+

3(b20V0 − 12b1V0 − 27V2)

5b0V0L
− 3b1(−b20V0 + 12b1V0 + 27V2)

5b20V0L2
(A.23)

−(64b40 − 756b20b1 − 1944b21 − 5400b0b2)V
2
0 + 2349b20V0V2

750b20V
2
0 L

2

+
−20898b1V0V2 − 37179V 2

2 + 18225b0V0V3

750b20V
2
0 L

2
+ O

(

1

L3

)

We may calculate from (A.23)

d′

d
= −b

2
0V0 − 12b1V0 − 27V2

15V0L2
− 2b1(b

2
0V0 − 12b1V0 − 27V2) logL

15b0V0L3
(A.24)

+
94b40 − 1251b20b1 − 324b21 − 5400b0b2

3375b0L3
+

9(3b20 − 31b1)V2

125b0V0L3
− 567V 2

2

125b0v
2
0L

3
+

27V3

5V0L3
+ · · ·

Compatibility with the first of (A.14) implies

V2

V0
=

23b20 − 36b1
34

,
V3

V0
= −2

324b2 + 124b30 + 189b0b1
37

(A.25)

V4

V0
=

3176b40 + 7236b20b1 − 243b21 − 810b0b2 − 4374b3
39

(A.26)
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Using this we finally obtain for the metric

V0

12
d2 ≡ d2

ℓ2
(A.27)

= 1 − 8b0
32L

+
4(26b20 + 9b1)

34L2
− 8b1 logL

32L2
− 8

32

b21
b0

log2 L

L3

+
16b1(13b

2
0 + 9b1)

34b0

logL

L3
− 8

37b0
(698b40 + 594b20b1 − 243b21 − 324b0b2)

1

L3
+O

(

1

L4

)

Therefore to next to leading order the Poicaré metric near the boundary is

ds2 =



1+
8

32 log rΛ
+

4
(

26 + 9 b1
b20
−18 b1

b20
log(b0 log 1

rΛ)
)

34 log2 rΛ
+O

(

log2 log rΛ

log3 rΛ

)





ℓ2

r2
(dr2+d~x2)

(A.28)

We observe that the first non-trivial correction is independent of b0. This is related to

the fact that as we have no unambiguous identification of the normalization of the gauge

coupling, the β-function coefficients we are using can be changed as

bn → an+1bn (A.29)

From (A.27) we observe that d is invariant up to the shift of the logarithms, logL =

log(b0 log 1
rΛ) since it depends only on b1/b

2
0 and b2/b

3
0. It is a non-trivial statement that

a change of scale in the coupling as in (A.29), in (A.27) can be absorbed into a change of

the scale Λ as well as the non-universal β-function coefficients bn>1.

The potential in the UV regime can be therefore expanded in terms of the overall AdS

scale as well as the β-function coefficients to obtain

V =
12

ℓ2



1 +
8

9
(b0λ) +

23 − 36 b1
b20

34
(b0λ)2 − 2

324 b2
b30

+ 124 + 189 b1
b20

37
(b0λ)3 + O(λ4)



 (A.30)

A.1 Scalar curvature invariants in the UV regime

We may now evaluate the basic scalar invariants of the background in the weak coupling

(UV) regime:

V = V0

[

1 +
8

9

b0
L

+
23b20
81L2

+
8b1 logL

9L2
+ O

(

1

L3

)]

(A.31)

(∂φ)2 = e−2A α̇s
2

α2
s

=
r2

d2

α̇s
2

α2
s

=
1

d2

α′2
s

α2
s

= V0

[

b0
12L

+
b0 logL

12L2
+

8b20 − 9b1
108L2

+ O
(

1

L3

)]

(A.32)

R =
4

3
(∂φ)2 − 5

3
V (A.33)

It is obvious that all invariants are regular in the UV, ( L → ∞). All higher curvature

invariants are also regular as they are polynomial functions of

e−2AȦ2 =
1

9
(∂φ)2 +

1

12
V , e−2AÄ = −1

3
(∂φ)2 +

1

12
V (A.34)
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A.2 The two-loop β-function coefficients of pure gauge theory

As a final point we quote the scheme-independent β-function coefficients for QCD, b0, b1.

With Nf (non-chiral) flavors in the fundamental, the β-function reads

β(g) = − g3

(4π)2

{

11

3
Nc −

2

3
Nf

}

− g5

(4π)4

{

34

3
N2

c − Nf

Nc

[

13

3
N2

c − 1

]}

+ · · · (A.35)

For the the ’t Hooft coupling, and with
Nf

Nc
→ x we obtain

λ ≡ g2Nc , λ̇ = −2

3

[

(11 − 2x)

(4π)2
λ2 +

(34 − 13x)

(4π)4
λ3 + · · ·

]

(A.36)

from where we obtain

b0 =
2

3

(11 − 2x)

(4π)2
,

b1
b20

= −3

2

(34 − 13x)

(11 − 2x)2
(A.37)

In this paper, x = 0 and therefore b1
b20

= − 3·34
2·121 ≃ 0.42.

B. General potentials at string tree level

Extra terms in the dilaton potential can arise from higher α′ corrections proportional to

the field strength of the RR four-form. We parametrize these corrections in the string

frame as

SF = −M
3

2ℓ2s

∫

d5x
√
g e−2φK

(

e2φy
)

, (B.1)

where

K(y) ≡ −2δc+
∞
∑

n=1

an

n
yn , y =

ℓ2s(F5)
2

5!
, a1 = 1 (B.2)

and we assumed the simplest type of contraction for simplicity. The contribution for general

type of contractions yield qualitatively the same result upon modifying the coefficients, an.

Therefore we will assume that (B.1) captures all such corrections.

Passing to the Einstein frame we obtain,

SE
F = −M

3

2ℓ2s

∫

d5x
√
g e

4
3
φK

(

e−
14
3

φy
)

(B.3)

The equations of motion are

∇µ1

[

e−
10
3

φK ′
(

e−
14
3

φy
)

Fµ1µ2···µ5

]

= 0 (B.4)

with solution

K ′
(

e−
14
3

φy
)

Fµ1µ2···µ5 = Nce
10
3

φEµ1µ2···µ5 (B.5)

where Nc will now be non-linearly related to the number of color branes. By squaring we

obtain the consistency conditions

y
[

K ′
(

e−
14
3

φy
)]2

= −N2
c e

20
3

φ , (K ′)2
F 2

µν

4!
= −N

2
c

ℓ2s
e

20
3

φ gµν (B.6)
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so that

F 2
µν =

F 2

5
gµν (B.7)

We now compute the contribution of the five-form to the stress tensor

TF
µν =

1√
g

δSE
F

δgµν

= −M
3

2

[

e−
10
3

φK ′F
2
µν

4!
− gµν

2ℓ2s
e

4
3
φK

]

=
M3e

4
3
φ

2ℓ2s

[

−e− 14
3

φyK ′ +
1

2
K

]

gµν (B.8)

We may therefore substitute the action of the five form SE
F with

ŜE
F =

M3

ℓ2s

∫

d5x
√
g VE(φ) (B.9)

VE(φ) = e
4
3
φ

[

e−
14
3

φX(φ)K ′
(

e−
14
3

φX(φ)
)

− 1

2
K
(

e−
14
3

φX(φ)
)

]

(B.10)

In the formulae above y = X(φ) is a solution of (B.6).

We redefine

ζ = e−
14
3

φy (B.11)

Then the relevant equations become

ζ[K ′(ζ)]2 = −N2
c e

2φ , VE = e
4
3
φ

[

ζK ′(ζ) − 1

2
K(ζ)

]

(B.12)

We return to the σ-model frame in order to estimate the large-Nc dependence

Sσ = M3

∫

d5x
√
ge−2φ

[

R+ 4(∂φ)2 +
1

ℓ2s
Vσ(φ)

]

, Vσ(φ) =

[

ζK ′(ζ) − 1

2
K(ζ)

]

(B.13)

If we define the ’t Hooft coupling as

λ ≡ Nc e
φ (B.14)

then from (B.12), ζ is a function of λ. The σ-model frame action (B.13) becomes

Sσ = N2
c M3

∫

d5x
√
g

1

λ2

[

R+ 4
(∂λ)2

λ2
+

1

ℓ2s
Vσ(λ)

]

(B.15)

We observe the O(N2
c ) dependence expected from the sphere action as well as the fact that

there is a non-trivial potential for the ’t Hooft coupling.

For small ζ we can calculate the potential perturbatively:

K(ζ) = −2δc + ζ +
1

2
a2ζ

2 + O(ζ3) , ζK ′(ζ) = ζ + a2ζ
2 + O(ζ3) (B.16)
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to obtain

ζ = −λ2 − 2a2λ
4 + O(λ6) , Vσ = −1

2

(

−2δc+ λ2 +
a2

2
λ4 + O(λ6)

)

(B.17)

For a DBI-like example : K(y) = 2
√

1 + y we obtain

ζ = − λ2

1 + λ2
, V (λ) = −

√

1 + λ2 (B.18)

It is obvious from the above analysis that V (λ) has an infinite series of terms, that,

after solving the equations of motion of the four-form, are independent from α′ except an

overall (universal) dependence in front. Therefore the higher-order in α′ corrections to the

four-form are equivalent to a (leading) order in α′ potential. Surprisingly, this potential

has a regular expansion at weak YM coupling.

This analysis obviously generalizes to the kinetic terms of the dilaton and graviton.

The general action is of the form

S =

∫

d5x
√
ge−2φ

[

V R+ 4V1(∂φ)2 + V2

]

(B.19)

The functions V, V1,2 depend on e2φy with y given in (B.2), and summarize the higher

α′-corrections of the four-form. Going through the same procedure as above, it can be

shown that this is equivalent with integrating out the four-form, and multiplying the kinetic

terms with appropriate series in the exponential of the dilaton as in the standard potential.

Moreover, higher derivative terms proportional to powers of the curvature as well as the

dilaton derivatives will be generated.

B.1 Corrections to the axion terms

The axion a, dual to the instanton density has a special position among the supergravity

fields. Its shift symmetry is protected, and its special normalization in the YM theory

implies that its contributions are suppressed by a power of 1/N2
c , due to the fact that the

dual variable in YM is an angle, [28]. This is reflected in the fact that in string theory, a

is a RR field and therefore has suppressed dilaton dependence. The leading term in the

effective action is
∫ √

g (∂a)2 in the string frame, and becomes

∫ √
ge2φ(∂a)2 =

1

N2
c

∫ √
gλ2 (∂a)2 (B.20)

in the Einstein frame where in the second equality we indicated the suppression of the

θ-induced vacuum energy.

We now consider the higher terms in the α′ expansion that involve the 5-form field

strength. In analogy with the previous section we may write them in the string frame as22

SF,a = −M
3

2ℓ2s

∫

d5x
√
g e−2φ

[

K1

(

e2φy
)

+K2

(

e2φy
)

e2φ(∂a)2
]

, (B.21)

22Higher terms like (∂a)4 are suppressed by extra powers of Nc and we do not need to consider them

here.
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where

K1(y) ≡ −2δc
∞
∑

n=1

an

n
yn , K2(y) ≡ 1 +

∞
∑

n=1

bn
n
yn , y =

ℓ2s(F5)
2

5!
, a1 = 1 (B.22)

Passing to the Einstein frame we obtain,

SE
F = −M

3

2ℓ2s

∫

d5x
√
g e

4
3
φ
[

K1

(

e−
14
3

φy
)

+K2

(

e−
14
3

φy
)

e
2
3
φ(∂a)2

]

(B.23)

The equations of motion for the 5-form are

∇µ1

[

e−
10
3

φK ′
1

(

e−
14
3

φy
)

+ e−
8
3
φK ′

2

(

e−
14
3

φy
)

(∂a)2
]

Fµ1µ2···µ5 = 0 (B.24)

with solution
[

K ′
1

(

e−
14
3

φy
)

+ e
2
3
φK ′

2

(

e−
14
3

φy
)

(∂a)2
]

Fµ1µ2···µ5 = Nce
10
3

φEµ1µ2···µ5 (B.25)

By squaring we obtain the consistency conditions

y
[

K ′
1

(

e−
14
3

φy
)

+ e
2
3
φK ′

2

(

e−
14
3

φy
)

(∂a)2
]2

= −N2
c e

20
3

φ (B.26)

and
[

K ′
1 + e

2
3
φK ′

2(∂a)
2
]2 F 2

µν

4!
= −N

2
c

ℓ2s
e

20
3

φ gµν (B.27)

so that

F 2
µν =

F 2

5
gµν (B.28)

We now compute the contribution of the five-form to the stress tensor

− 2

M3
TF

µν = − 2

M3

1√
g

δSE
F

δgµν
(B.29)

= e−
10
3

φ
[

K ′
1 + e

2
3
φK ′

2(∂a)
2
] F 2

µν

4!
+
e2φ

ℓ2s
K2∂µa∂νa−

gµν

2ℓ2s
e

4
3
φ
[

K1 + e
2
3
φK2(∂a)

2
]

=
e

4
3
φ

ℓ2s

[

e−
14
3

φy
[

K ′
1+e

2
3
φK ′

2(∂a)
2
]

− 1

2

[

K1+e
2
3
φK2(∂a)

2
]

]

gµν +
e2φ

ℓ2s
K2∂µa∂νa

The axion equation also reads

∇µ
[

e2φK2∇µa
]

= 0 (B.30)

We redefine

ζ = e−
14
3

φy , η = e
2
3
φ(∂a)2 (B.31)

and (B.26) becomes

ζ[K ′
1(ζ) +K ′

2(ζ)η]
2 = −N2

c e
2φ (B.32)

The dual action which gives the same equations of motion is

S̃E =
M3

ℓ2s

∫

d5x
√
g e

4
3
φ

[

ζ(K ′
1(ζ) + ηK ′

2(ζ)) −
1

2
(K1(ζ) + ηK2(ζ))

]

(B.33)

– 41 –



J
H
E
P
0
2
(
2
0
0
8
)
0
3
2

In the action above, ζ(λ, η) is a solution of (B.32). In the string frame the dual action

becomes

S̃σ =
M3

ℓ2s

∫

d5x
√
g e−2φ

[

ζ(K ′
1(ζ) + η̃K ′

2(ζ)) −
1

2
(K1(ζ) + η̃K2(ζ))

]

(B.34)

with η̃ = e2φ(∂a)2. We must separate the kinetic term of the axion from the higher

derivative terms that appear because ζ depends non-trivially on η. This turns out to be in

the Einstein frame

S̃E
axion−linear = −M

3

2ℓ2s

∫

d5x
√
g e2φK2(ζ

∗)(∂a)2 (B.35)

where now ζ∗ is a solution ζK ′
1(ζ) = −N2

c e
2φ.

We finish this section by giving the most general dual action involving the five form

S =

∫

d5x
√
g e−2φ Z(e2φy, zi) (B.36)

where Z is an arbitrary function and zi are scalar invariants of other fields, R,R2, RµνR
µν ,

(∂φ)2, e2φ(∂a)2) etc.

The dual action is given by the Legendre transform

S̃ =

∫

d5x
√
g

[

ζ∂ζZ(ζ, zi) −
1

2
Z(ζ, zi)

]

(B.37)

where ζ satisfies

ζ (∂ζZ(ζ, zi))
2 = −λ2 (B.38)

B.2 Corrections to the gauge coupling constant identification

Consider now a probe D3 brane and the coupling of the kinetic gauge field terms

SD3 =
T3

ℓ4s

∫

d4x
√

ĝe−φZ(e2φy)Tr[F 2], Z(y) = 1 +
∞
∑

n=1

cn
n
yn, y =

ℓ2s(F5)
2

5!
(B.39)

where T3 is dimensionless and Z(y) summarizes higher-order couplings of the five form on

the D-brane (arising from disk diagrams). Going to the Einstein frame and substituting

from B.11, B.12 we obtain for the gauge coupling constant

g2
YM =

eφ

Z(ζ)
(B.40)

Therefore, these corrections, although without derivatives, are due to the higher α′ correc-

tions on the branes. A similar argument indicates that the tension of possible flavor branes

obtains similar types of corrections.
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B.3 Other higher derivative corrections at the tree level

After dualizing the five form, there remain true higher-derivative corrections associated to

curvatures and derivatives of the dilaton. We will indicate here how such corrections can

be instrumental in effectively generating a constant term in the dilaton potential, a fact

that we have assumed in this paper in order to simplify our problem.

To give the idea, we will focus on the tree level, string frame effective action with-

out dilatonic kinetic terms and considered only as a function of the scalar curvature (for

simplicity)

S =

∫

d5x
√
ge−2φ f(ℓ2sR, e

2φy) (B.41)

where we are using the same definition of y as in (B.2) and f is a function with a regular

series expansion around R = y = 0 . The equations of motion are

ℓ2sfR Rµν − 1

2
gµνf + e2φ [gµν� −∇µ∇ν ] (e

−2φf) = 0 , fR ≡ δf

δR
(B.42)

∇µ [fy Fµν1···ν4] = 0 , fy ≡ δf

δy
(B.43)

These equations admit an AdS5 solution,

Rµν = − 4

ℓ2AdS

gµν (B.44)

with φ =constant and

fy Fν1···ν5 =
Nc

ℓs
Eν1···ν5 → y f2

y

[

x, e2φy
]

= −N2
c (B.45)

where we defined

x = −20
ℓ2s
ℓ2

(B.46)

The metric equation then becomes

2xfR

[

x, e2φy
]

+ 5f
[

x, e2φy
]

= 0 (B.47)

and typically the two algebraic equations are expected to have a solution. A simple example

involves

f = e2φy + ℓ2sR+ µℓ4sR
2 (B.48)

which generates an AdS5 space with

ℓ2

ℓ2s
=

9µ

10(7 ±
√

49 + 180µλ2)
, λ ≡ eφNc (B.49)

In particular, a solution exists for λ = 0 and it is

ℓ2

ℓ2s
=

9µ

140
(B.50)
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It is not difficult to verify that allowing now the dilaton to run logarithmically in the

UV, so that λ → 0 as r → 0 is a small (subleading) perturbation in the α′ expansion,

generating a solution that logarithmically asymptotes to the AdS solution above. In par-

ticular, the kinetic terms of the dilaton that have been neglected will be suppressed by

large inverse logs, and the same applies to the power series in the t’ Hooft coupling Nce
φ.

We will not pursue this avenue further here, leaving it for a future investigation.

C. Perturbative analysis near an extremal (AdS) point of the dilaton po-

tential

In this appendix we will analyze here the stability properties of the perturbative dilaton

potential.

We will use the domain-wall coordinate, (2.14). The field equations are given

by (2.18), (2.18) and (2.19). We parametrize the potential around an AdS extremum

as

V =
12

ℓ2
− 16ξ

3ℓ2
Φ2 + O(Φ3) (C.1)

where Φ ≪ 1. Since V ′ = 0 at the critical point, there is a AdS5 solution with

A =
u

ℓ
, Φ = 0 (C.2)

Perturbing around the fixed point solution A = A∗ + δA, Φ = δΦ we obtain to linear order

18

ℓ
δA′ = δΦ′2 − 4

ℓ2
Φ2 = O(δΦ2) , δΦ′′ − 4

ℓ
δΦ′ − 4ξ

ℓ2
δΦ = 0 (C.3)

We observe that to linear order δA is a constant, which amounts to a renormalization of

the AdS length scale ℓ. We can therefore ignore it. The general solution of the second

equation is

δΦ = C+e
(2+2

√
1+ξ)u

ℓ + C−e
(2−2

√
1+ξ)u

ℓ (C.4)

Changing variable to r = Leu/ℓ we obtain to linear order in the perturbation

ds2 =
ℓ2

r2
(dr2 + d~x2) + · · · , δΦ = C+

(r

ℓ

)(2+2
√

1+ξ)
+ C−

(r

ℓ

)(2−2
√

1+ξ)
(C.5)

We may now analyze the potential (we assume we are in 5 dimensions and therefore

δc = 5)

V (Φ) =
λ

4
3

ℓ2s

[

5 − 1

2
λ2 − x λ

]

(C.6)

where

x ≡ Nf

Nc
. (C.7)

The potential is plotted in figure 5

It has a single extremum at λ = λ0 with:

λ0 ≡ Nce
φ0 =

−7x+
√

49x2 + 400

10
. (C.8)
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Figure 5: Left:The dilaton potential plotted as a function of the t ’Hooft coupling for x = 5.

Right: The value of the t ’Hooft coupling at the extremum as a function of x.
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Figure 6: Left:ξ plotted as a function of x. Right: The value of the AdS radius L in units of ℓs as

a function of x.

From this we obtain the value of the potential at the extremum that gives,

ℓ2s
ℓ2

=
λ

4
3
0

400

[

100 + 7x2 − x
√

49x2 + 400

400

]

(C.9)

as well as the second derivative parametrized as in (C.1)

ξ =
5

4

[

400 + 49x2 − 7x
√

49x2 + 400

100 + 7x2 − x
√

49x2 + 400

]

(C.10)

As x varies between 0 ≤ x ≤ ∞, the parameter ξ that controls the anomalous dimension

of the YM coupling constant varies as 5 ≥ ξ ≥ 7
2 as can be seen in figure 6.

This implies that the associated dimension is ∆ = 2+2
√

1 + ξ and satisfies 2+3
√

2 <

∆ < 2 + 2
√

6 or equivalently 6.24 < ∆ < 6.90. It therefore corresponds to an irrelevant

operator. This is not what we expect for QCD at weak coupling.

The AdS radius ℓ (in unite of ls) becomes small at x < 0, whereas it increases as x

becomes large as can be seen in figure 6. Therefore it becomes arbitrarily larger than the

string scale for large x and therefore the background will be weakly curved. Therefore,
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although the t ’Hooft coupling at the AdS extremum is small as x becomes large, the

geometry is weakly curved. This is against the AdS5×S5 intuition.

It should also be noted that the coefficients Nc and Nf appearing in the potential are

multiplicatively related to the number of colors and flavors respectively. They equal them if

the relations stemming from N = 4 branes still hold, but this is not in general guaranteed.

D. Analysis of the dilaton potential with single exponential

In the string inspired dilaton potential, the weak coupling asymptotics of the flow is gov-

erned by a single exponential in the potential. Also in the confining examples that we study

in this paper, the leading term of the potential in the IR is an exponential. Therefore it

is desirable to investigate the solutions of the system given by a potential of the following

form (after a convenient shift in the dilaton)

V (φ) =
4

3
ǫ eαφ, ǫ = ±1. (D.1)

We want to find all the solutions of the system of equations, (2.18) and (2.19) with

V given by (D.1). As a starting point, we classify the solutions by the behavior of the

phase space variable X which, in this case, obeys the following simple equation obtained

from (3.7):
dX

dφ
=

4

3

(

X +
1

a

)

(X2 − 1)

6X
, (D.2)

where we defined

a = 8/3α. (D.3)

The fixed points of (D.2) are given by X = ±1 and X = −1/a.

Equation (D.2) can be integrated to yield

eφ−φ0 =
(X − 1)

3a
8(1+a) (X + 1)

3a
8(1−a)

(

X + 1
a

)

3a
4(1−a2)

. (D.4)

For the special case of a = ±1 we obtain instead

log
X − 1

X + 1
− 2

X ± 1
=

16

3
(φ− φ0). (D.5)

Now, the solutions of the system are given by the fixed point solutions of (D.2) and

the solutions that flow between these fixed points. We first list the fixed point solutions:

D.1 The X = 1 fixed point

This amounts to solving

φ′ = 3A′ , φ′′ +
4

3
φ′2 = 0 , eαφ → 0 (D.6)

with solution

eφ = C (u0 − u)
3
4 (D.7)
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We take the range of u as u ∈ (−∞, u0). If α > 0 this solution is valid in the immediate

neighborhood of u = u0. If α < 0 it is valid in the neighborhood u→ ∞. We also find

eA = C̃(u0 − u)
1
4 (D.8)

and for the Poincaré coordinate

r − r0 =
4

3C̃
(u0 − u)

3
4 , b(r) =

(

3C̃4

4

)
1
3

(r − r0)
1
3 , eφ =

3

4
CC̃(r − r0) (D.9)

This solution is valid near r = r0.

D.2 The X = −1 fixed point

This amounts to solving

φ′ = −3A′ , φ′′ − 4

3
φ′2 = 0 , eαφ → 0 (D.10)

It is related to the X = 1 solution by φ→ −φ.

D.3 The X = − 1
a fixed point

It exists if

(a) ǫ = 1 and |a| > 1

(b) ǫ = −1 and |a| < 1

(c) ǫ = ±1 and |a| = 1. In this case it merges with the X = ±1 fixed point solutions.

The solution is

eφ =

(

C

u0 − u

)− 3a
4

, eA = C̃ (u0 − u)
a2

4 , C =
3a

4

√

ǫ (a2 − 1) (D.11)

In the Poincaré coordinate,

r − r0 =
4

(4 − a2)C̃
(u0 − u)

4−a2

4

eA(r) = C̃

(

(4 − a2)C̃

4

)
a2

4−a2

(r − r0)
a2

4−a2 (D.12)

eφ = C− 3a
4

(

(4 − a2)C̃

4

)
3a

4−a2

(r − r0)
3a

4−a2 (D.13)
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Figure 7: The stability properties of the fixed points. Case A is for 0 < a < 1 and case B

corresponds to a > 1. The cases where a < 0 can be obtained from the above figures by using the

reflection symmetry in X .

D.4 Flow solutions

More general solutions are given by the flows between the fixed points of X. The nature

of these flows are determined by the stability properties of the fixed points that we depict

in figure (7) for the case a < 0. A cross denotes an unstable fixed point and a point

denotes a stable one. The arrows between these points depict the direction of the flow in

an appropriate radial variable that we define below. The boundaries of the phase space

are given by X = ±∞ and X = 0. In particular the X < 0 and the X > 0 solutions are

disconnected. The case a > 0 can be obtained from figure (7) by utilizing the symmetry

of (D.2) under X → −X, φ→ −φ and a→ −a.
The system can be solved analytically in the following radial variable, t:

d

du
= e

αs
2

φ d

dt
(D.14)

We describe the solution for the case ǫ = +1 which is the interesting case for us. In

this case the range of the phase space variable is given by −1 < X < 1. This range is

divided into two flow parts by the presence of the fixed point at X = −1/a. Let us take

a > 1 (a < 1 is given by a simple replacement of the hyperbolic functions below with the

triangular ones).

D.4.1 The solution: −1 < X < −1/a

Let us define,

t =
2
√
a2 − 1

3a
(t− t0) (D.15)

The solution is given by,

φ = φ0 +
3a

4

(

1

a+ 1
log cosh(t) − 1

a− 1
log sinh(t)

)

, (D.16)
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and

A = A0 +
a

4

(

1

a+ 1
log cosh(t) +

1

a− 1
log sinh(t)

)

. (D.17)

The phase space variable as a function of t is given by,

X(t) =
a−1
a+1 tanh2(t) − 1
a−1
a+1 tanh2(t) + 1

. (D.18)

In these equations, we choose t > 0 that corresponds to the range t0 < t < ∞. This

solution corresponds to the flow from the fixed point X = −1 at t = t0 to the fixed point

X = −1/a at t = ∞.

The asymptotics of this solution are as follows. As t→ t0, (X → −1),

λ → (t− t0)
3a

4(a−1) (D.19)

ds2 → (t− t0)
a

2(a−1)dx2 + (t− t0)
2

a−1dt2 (D.20)

Thus the space shrinks to a point as one approaches to the X = −1 fixed point. As t→ ∞,

(X → −1/a),

λ → e
− t√

a2−1 (D.21)

ds2 → 1

r2

(

dx2 + r−
8

a2 dr2
)

(D.22)

where in the last equation we changed the variable as r = exp(−at/
√
a2 − 1), hence r → 0

in the limit. We observe from the asymptotics of the metric, that the space becomes AdS

only when a is taken to ∞. This nicely parallels the fact that as a → ∞ the fixed point

approaches to X → 0 and, as our primary example in this paper suggests, one has an

asymptotically AdS space in the X → 0 limit.

D.4.2 The solution: −1/a < X < +1

The solution is given by,

φ = φ0 +
3a

4

(

− 1

a− 1
log cosh(t) +

1

a+ 1
log sinh(t)

)

, (D.23)

and

A = A0 +
a

4

(

1

a− 1
log cosh(t) +

1

a+ 1
log sinh(t)

)

. (D.24)

The phase space variable as a function of t is given by,

X(t) =
−a+1

a−1 tanh2(t) + 1
a+1
a−1 tanh2(t) + 1

. (D.25)

This solution is valid in the whole range −1/a < X < +1 (for a > 1) and describes the two

flow solutions: one from X = 0 to X = −1/a and from X = −1/a and one from X = 0 to

X = 1.
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The interesting asymptotics are t→ ∞, (X → −1/a) and t→ t1 where,

t1 = t0 +
3a

2
√
a2 − 1

tanh−1

√

a− 1

a+ 1
. (D.26)

In the first case, as X → −1/a, one obtains the same asymptotics as in (D.21)

and (D.22). In the second case, as X → 0, one finds,

λ → const. (D.27)

ds2 → dx2 + dt2. (D.28)

E. β-function with an exponential tail

In this appendix we provide another example of an exact β-function and the associated

holographic geometry. We choose the β-function here as:

β = −b0λ2e−c0λ (E.1)

In perturbation theory this describes an asymptotically free theory. In the IR it reaches a

fixed point but in way which is different from the previous example. In particular the fixed

point is at infinite coupling.

The potential that follows from this β-function is obtained from (3.8) as,

V = V0

(

1 − b20
9
λ2e−2c0λ

)

e
− 8b0

9c0
(e−c0λ−1), (E.2)

The plot of the potential is shown in figure 8. The RG flow is from the Gaussian fixed

point in the UV to an IR fixed point at λ = ∞ in the IR. The corresponding UV geometry

is an asymptotically AdS space with radius given by (4.12) as before. The corresponding

far IR geometry is also AdS as expected from the fact that V in (E.2) approaches to a

constant as λ→ ∞:

V → Vf = V0e
8b0
9c0 . (E.3)

The radius of the AdS in the IR is given by,

ℓIR = 2

√

3

Vf
. (E.4)

The running of the ’t Hooft coupling is determined by the following differential equation

that follows from (3.5):

λ′ =

√

3Vf

6
b0λ

2 e−c0λ e
− 4b0

9c0
(e−c0λ−1). (E.5)

We display the numerical solution to this equation in figure 9. From this figure it is clear

that the coupling constant diverges in the IR. One can calculate the scalar invariants of

the geometry. The Ricci scalar is given by (3.9) and R = −3/2E. In the Einstein frame,
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Λ

V

V0

Vf

Figure 8: Scalar potential as a function of λ for the exponential type running. We set V0 = b0 =

c0 = 1 for illustrative purposes.

u

Λ

Figure 9: Running of the coupling constant in the exponential case. We have set V0 = b0 = c0 = 1.

one obtains the IR limit value of R as,

R = −15

4
Vf , (E.6)

where Vf is given by (E.3). Note that the function X in (3.4) limits to zero both in the UV

and the IR. This is in accord with the fact that the scalar potential goes over to constant
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values both in the UV and the IR. The 5D geometry is of the form of a Minkowski domain

wall that interpolates between two AdS geometries.

The details of the approach towards the IR AdS geometry can be studied as in sec-

tion 5.2. One determines the following subleading behavior near the IR fixed point:

ds2 =
l2IR
r2

(

1 − 4

9

1

rΛ

1

log log(rΛ)

)−2
(

dx2 + dr2
)

, (E.7)

as r → ∞.
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